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Resumen

Los espacios homogéneos son, por su sencillez, los objetos favoritos de geómetras y físicos.
Las propiedades locales, en muchos casos, se convierten en globales. Sin lugar a dudas, son los
espacios más estudiados y dan lugar a los primeros ejemplos en muchas nuevas teorías. Por
ejemplo, los espacios Eucídeos, las esferas, los espacios hiperbólicos o los grupos de Lie son
espacios homogéneos.

Los espacios homogéneos son variedades diferenciables donde hay una acción transitiva, es
decir, un grupo de transformaciones globales de manera que para cualquier par de puntos existe
una transformación que envía uno en el otro. Utilizando esas transformaciones, bajo ciertas
condiciones, podemos transportar cualquier tensor a todos los puntos de la variedad, como
por ejemplo, un tensor métrico, o un tensor simpléctico. En particular, si existe una métrica
diremos que el espacio homogéneos es Riemanniano.

El Teorema de Ambrose-Singer caracteriza los espacios homogéneo Riemannianos a través
de la existencia de un tensor invariante que satisface un sistema de ecuaciones covariantes.
Este tensor se llama estructura homogénea y el Teorema de Ambrose-Singer es la primera
pieza del programa iniciado por Tricerri-Vanhecke y que estudia las variedades homogéneas
Riemannianas a través del tensor estructura homogénea.

Este programa establece los siguientes principios: Caracterizar un espacio homogéneos
específico es conocer todos los tensores estructura homogénea; Se pueden utilizar las estructuras
homogéneas para diferenciar acciones transitivas diferentes.

En esta tesis el objeto de estudio son los espacios homogéneos y las técnicas que aplicaremos
son algunas que surgen del programa de Tricerri-Vanhecke. Describir todas las estructuras
homogéneas de un espacio homogéneo específico, en general, es un problema difícil. De hecho,
no son conocidas todas las estructuras homogéneas de la mayoría de los espacios homogéneos
Riemannianos. En primer lugar, caracterizamos todas las estructuras homogéneas del espacio
hiperbólico complejo. A continuación, examinamos el proceso de reducción de estructuras
homogéneas cuando la fibra de la reducción es unidimensional.

Numerosas generalizaciones del Teorema de Ambrose-Singer y el programa de Tricerri-
Vanhecke se han ido descubriendo a lo largo de los años. Sin embargo, todas ellas tenían dos
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características comunes: debe existir una métrica y se aplican a acciones transitivas. Siguiendo
esa filosofía, la segunda parte de la tesis tiene como objetivo debilitar esas dos condiciones.

En espacios homogéneos reductivos, nosotros generalizamos el Teorema de Ambrose-
Singer con presencia de un conjunto finito de tensores invariantes y sin ser necesario que una
métrica esté presente. Damos una definición más general de estructura homogénea y nuevos
tensores toman papel en la teoría más general. Finalmente, aplicamos estos resultados en los
espacios homogéneos simplécticos.

En acciones no transitivas, nos centramos en variedades Riemannianas de cohomogeneidad
uno, es decir, hay un grupo de transformaciones actuando en la variedad y las órbitas de la
acción son hipersuperficies en la variedad. Este es el caso más cercano a una acción transitiva,
sin ser transitiva. En este marco de trabajo, probamos que la existencia de una acción de
cohomogeneidad uno en una variedad Riemanniana es equivalente a la existencia de un tensor
que satisface un sistema de ecuaciones covariantes. Después, aplicamos esto para estudiar las
acciones de cohomogeneidad uno en el espacio Euclídeo y el espacio hiperbólico real.



Abstract

Homogeneous spaces are, due to their simplicity, the favorite objects of study for geometers
and physicists. Local properties often extend to global ones. Undoubtedly, these spaces are
among the most extensively researched and give rise to the first examples of many new theories.
These include Euclidean spaces, spheres, hyperbolic spaces, and Lie groups, all classified as
homogeneous spaces.

Homogeneous spaces are differentiable manifolds where there is a transitive action of a Lie
group. That is, a group of global transformations such that for any two points, there exists a
transformation that sends one point to the other. Under suitable conditions and applying those
transformations, we can transport any tensor we have at one point to another point, for example,
a metric or a symplectic tensor. In particular, if a metric is present, the homogeneous space is
called Riemannian.

The Ambrose-Singer Theorem characterizes Riemannian homogeneous spaces via the
existence of an invariant tensor that satisfies a system of covariant equations. This tensor
is called a homogeneous structure and the Ambrose-Singer Theorem is the cornerstone of
the program initiated by Tricerri-Vanhecke that studies Riemannian homogeneous manifolds
through their homogeneous structures.

This program establishes the following principles: To characterize a specific Riemannian
homogeneous space is to know all its homogeneous structures; Homogeneous structures can be
used to differentiate transitive actions.

In this thesis, the object of study is homogeneous spaces, and we apply techniques derived
from the Tricerri-Vanhecke program. Describing all homogeneous structures of a specific
homogeneous space is, in general, a challenging problem. In fact, many homogeneous structures
of most Riemannian homogeneous spaces remain unknown. First, we characterize all the
homogeneous structures of the complex hyperbolic space. Afterwards, we examine the process
of reduction of homogeneous structures when the fibre of the reduction is one-dimensional.

Many generalizations of the Ambrose-Singer Theorem and the Tricerri-Vanhecke program
have been discovered over the years. However, all of them share two common characteristics:
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There must exist a metric tensor and they only apply to transitive actions. Following that
philosophy, the second part of this thesis aims at tackling and weakening those two conditions.

In reductive homogeneous spaces, we generalize the Ambrose-Singer Theorem with the
presence of a finite set of invariant tensors, eliminating the requirement of a metric. We provide
a broader definition of homogeneous structure, and new tensors assume significance in the
overarching theory. Finally, we apply those results to symplectic homogeneous spaces.

In non-transitive actions, we focus on Riemannian cohomogeneity one manifolds. That is,
there is a group of transformations acting on the manifold in such a way that the orbits of the
action are hypersurfaces. This is the closest case to a transitive action, without being transitive.
In this framework, we prove that the existence of a Riemannian cohomogeneity one action is
equivalent to the existence of a tensor satisfying a system of covariant equations. Then, we
apply this to study cohomogeneity one actions on Euclidean spaces and real hyperbolic spaces.



Introduction

There is a fascination with homogeneous manifolds among geometers and physicists due to
their elegance and the insights they offer into the interaction between symmetry and geometry.
Moreover, good geometric examples are often homogeneous. Certainly, Euclidean spaces,
Lie groups, symmetric spaces, spheres, hyperbolic spaces, projective spaces, Grassmannians,
among others, exemplify homogeneous manifolds. Coupled with the characteristic of uniformity
at every point, this elevates homogeneous manifolds as an ideal ground for testing conjectures
or, conversely, discovering counterexamples to assertions. Indeed, computations are simplified,
allowing us to infer statements from local to global. This renders differential geometry a
domain where homogeneous manifolds serve as a preferred subject of study. This establishes
them as a fundamental subject in the study of geometry, particularly concerning Lie groups and
their actions.

This thesis is focused on the interplay of reductive homogeneous manifolds and Ambrose-
Singer connections. These two topics are connected via the well-known Ambrose-Singer
Theorem [AS58] and its generalizations [GO92; Kir80; Luj14]. The Ambrose-Singer connec-
tions ∇̃ are affine connections satisfying,

∇̃R̃ = 0, ∇̃T̃ = 0,

where R̃ and T̃ are the curvature and torsion of ∇̃. In the special case where (M,g) is a
Riemannian manifold and ∇̃ is metric, these equations can be equivalently expressed as:

∇̃R̃ = 0, ∇̃S = 0,

where S = ∇ − ∇̃ and ∇ denotes the Levi-Civita connection. The tensor S is called the
Riemannian homogeneous structure, playing a central role in the narrative of AS-connections.

Ambrose-Singer Theorem ([AS58, p. 656]). Let (M,g) be a connected and simply-connected
complete Riemannian manifold. Then, the following statements are equivalent:

1. The manifold M is Riemannian homogeneous.
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2. The manifold M admits a linear connection ∇̃ satisfying:

∇̃R = 0, ∇̃S = 0, ∇̃g = 0, (AS)

where R is the curvature tensor of the Levi-Civita connection ∇ and S = ∇− ∇̃.

Under the specified topological conditions, the presence of a homogeneous structure implies
that the manifold is Riemannian homogeneous, and vice versa. In other words, the geomet-
ric characteristics of homogeneity can be interpreted via the equations involving covariant
derivatives of a connection. Now, key questions arise: Is there a method to discern whether a
Riemannian manifold is homogeneous? What essential information is required to distinguish
among different homogeneous manifolds?

These inquiries prompted the initiation of a research program by Tricerri and Vanhecke
in [TV83], which is called in literature as Riemannian homogeneous structures. The aim of
this program is to thoroughly investigate homogeneous and locally homogeneous Riemannian
manifolds, with a specific focus on the analysis of Ambrose-Singer connections and Riemannian
homogeneous structures.

This program relies on two principles: To characterize a specific Riemannian homogeneous
space is to know all its Riemannian homogeneous structures; Homogeneous structures can be
used to differentiate transitive actions.

In the first principle, the existence of any homogeneous structures ensures that, for any two
points, there exist a local isometry sending one point to the other which is affine with respect to
the Ambrose-Singer connection. However, it is not always globally homogeneous. If we relax
the topological conditions:

Theorem ([Tri92, p. 413, Thm. 2.1]). A connected Riemannian manifold (M,g) is locally
homogeneous if and only if there exists a linear connection ∇̃ satisfying:

∇̃R = 0, ∇̃S = 0, ∇̃g = 0,

where R is the curvature tensor of the Levi-Civita connection ∇ and S = ∇− ∇̃.

That is, the existence of solutions to (AS) implies the existence of an isometric transitive
action, and conversely. Thus, by scrutinizing all homogeneous structures we describe all
transitive actions.

In the second principle, let V be the tangent space at one point, and consider the space of
homogeneous structures,

S(V ) =
{

S ∈V ∗⊗V ∗∧V ∗ : g(SXY,Z)+g(SX Z,Y ) = 0
}
.
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Since,
∇̃S = 0,

we have that S is invariant by parallel transport along closed curves. Symbolically,

R̃XY ·S = 0

where R̃ is the curvature tensor of ∇̃. Specifically, R̃XY ⊂O(n); thus, pointwise, by decomposing
the module S(V ) into O(n)-irreducible submodules, we derive necessary conditions for two
distinct homogeneous structures to be isomorphic. In simpler terms, the homogeneous structure
helps to discern the essential conditions required for two Riemannian homogeneous manifolds
to be identical under the same transitive action.

The Ambrose-Singer Theorem was extended to any Riemannian homogeneous manifold
possessing a finite set of invariant tensors, as detailed in [Kir80]. Subsequently, the first gener-
alization of the Ambrose-Singer Theorem to pseudo-Riemannian manifolds was demonstrated.

Theorem ([GO92]). Let (M,g) be a connected and simply-connected pseudo-Riemannian
manifold. Then, the following statements are equivalent:

1. The manifold M is reductive pseudo-Riemannian homogeneous.

2. The manifold M admits a complete linear connection ∇̃ satisfying:

∇̃R = 0, ∇̃S = 0, ∇̃g = 0,

where R is the curvature tensor of the Levi-Civita connection ∇LC and S = ∇LC − ∇̃.

This generalization introduces novel concepts: Ambrose-Singer connections apply to
reductive pseudo-Riemannian homogeneous manifolds; The requirement for completeness
shifts from the Levi-Civita connection to the geodesic completeness of the Ambrose-Singer
connection.

Any homogeneous manifold M, non necessarily Riemannian, is equal to G/H where G
is the Lie group action and H is the isotropy group at one point. Under these conditions, it
is reductive if, for the Lie algebra g of G, there exists a decomposition g = h+m where h

is the Lie algebra of H and m is an Ad(H)-subspace. It is worth noting that the majority of
homogeneous manifolds fall into the reductive category, rendering this condition non restrictive.
Specifically, every Riemannian homogeneous manifold is inherently reductive [CC19, p. 36].

Summarizing, the Tricerri-Vanhecke program could be adapted for pseudo-Riemannian
homogeneous manifolds incorporating additional invariant tensors. In particular, if we decom-
pose the space of homogeneous structures S(V ) into the different Riemannian structure groups
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stabilizing these invariant tensors, then we get necessary conditions for these structures to be
isomorphic in that underlying geometry. For example, this can be applied to manifolds that
are: pseudo-hermitian, see [AG88]; para-hermitian, see [GO92]; pseudo-quaternion Kähler,
see [CGS06]; para-quaternion Kähler, see [CC19]; almost contact metric, see [Fin98; CC19].

Outset

The first goal of this thesis is to give a quick overview and introduction to the Ambrose-Singer
Theorem and its generalizations throughout the history together with the research program of
Tricerri-Vanhecke and its applications.

In the first principle, we outlined that to describe all transitive actions of a Riemannian
manifold (i. e., all the descriptions as M = G/H) it is equivalent to scrutinize all homogeneous
structures. Surprisingly, comprehensive lists detailing all homogeneous descriptions of homo-
geneous spaces are still unknown in many cases. Furthermore, even if all transitive actions
on a homogeneous space are known, questions about the geometry of the Ambrose-Singer
connections or homogeneous structures are still unsolved in most cases. Some exceptions
are: the Heisenberg group, see [TV83]; the spheres, see [AHL23]; the real hyperbolic space,
see [CGS09; CGS13]. The second goal of this thesis is to scrutinize the Kähler homogeneous
structures of the complex hyperbolic space.

It is remarkable that, in the situation where there is an invariant map between two homoge-
neous manifolds of different dimensions, the relationship of the homogeneous structures of both
manifolds is mostly unknown. An example of this is the reduction procedure of homogeneous
structures, which was first introduced in [CL15]. In particular, the authors reduce from almost
contact metric homogeneous structures to almost pseudo-hermitian homogeneous structures.
The third goal is to examine the converse reduction, that is, from almost pseudo-hermitian
homogeneous structures to almost contact metric homogeneous structures.

Many generalizations of the Ambrose-Singer Theorem and the Tricerri-Vanhecke program
have been discovered over the years. However, all of them share two common characteristics:
There must exist a metric tensor and they only apply to transitive actions. On the one hand, if
none invariant tensor is present in the manifold, we have

Theorem ([KN69, Thm. 2.8]). Let M be a connected and simply-connected manifold. Then,
the following assertions are equivalent:

• The manifold M is reductive homogeneous.

• The manifold M admits a complete linear connection ∇̃ satisfying:

∇̃R̃ = 0, ∇̃T̃ = 0,
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where R̃ and T̃ are the curvature and torsion tensor fields of the connection ∇̃.

The fourth goal is to proof an Ambrose-Singer Theorem for general homogeneous manifolds
equipped with invariant tensors and apply this result to start a Tricerri-Vanhecke program for
non-metric homogeneous manifolds, for example, symplectic homogeneous manifolds.

On the other hand, if the action is not transitive, then this fruitful philosophy is unknown.
The fifth goal is to be able to extrapolate this program to non-transitive and proper Riemannian
actions when the principal orbits are hypersurfaces. It is desirable to characterize these actions
in terms of some tensors as in Ambrose-Singer Theorem, to obtain classifications and to give
explicit examples of these objects.

Outline

Chapter 1 provides an introduction to reductive homogeneous manifolds and exhibits the history
of the Ambrose-Singer Theorem. The Tricerri and Vanhecke program, [TV83], is presented
with examples at the end of the chapter.

Chapter 2 describes the holonomy algebras of all canonical connections and their action
on complex hyperbolic spaces CH(n) in all dimensions (n ∈ N). This thorough investigation
yields a formula for all Kähler homogeneous structures on complex hyperbolic spaces. Kähler
homogeneous structures can be decomposed into the different Tricerri-Vanhecke (or Abbena-
Garbiero) orthogonal and irreducible U(n)-submodules. Thus, we characterize the holonomy
of the canonical connection in terms of the projections of the homogeneous structures to the
different submodules.

Chapter 3 studies the reduction procedure applied to pseudo-Kähler manifolds by a one
dimensional Lie group acting by isometries and preserving the complex tensor. We endow
the quotient manifold with an almost contact metric structure. We use this fact to connect
pseudo-Kähler homogeneous structures with almost contact metric homogeneous structures.
This relation will have consequences in the class of the almost contact manifold. Indeed, if we
choose a pseudo-Kähler homogeneous structure of linear type, then the reduced almost contact
homogeneous structure is of linear type and the reduced manifold is of type C5 ⊕C6 ⊕C12 in
the Chinea-González classification [CG90].

Chapter 4 generalizes the Ambrose-Singer Theorem for general homogeneous manifolds,
that is, the main result of this chapter provides a characterization of reductive homogeneous
spaces equipped with some geometric structure (not necessarily pseudo-Riemannian) in terms
of the existence of a certain connection. We relax the conditions in this theorem and prove a
characterization of reductive locally homogeneous manifolds. We connect these two viewpoints
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with infinitesimal models, the Nomizu construction and the transvection construction and give
coherent definitions of isomorphisms for all these classes.

Chapter 5 applies the results of Ch. 4 to symplectic geometry. We can classify reductive
locally homogeneous symplectic manifolds by the existence of one Ambrose-Singer connection
whose torsion belongs to some of the irreducible Sp(2n)-submodules of the torsion-like tenso-
rial space. Additionally, if we have a Fedosov manifold, we can consider the difference tensor
between the Fedosov connection and the Ambrose-Singer connection. It is a Fedosov homoge-
neous structure. Thus, with an analogous procedure to the second principle mentioned above,
but with a non-metric perspective. The action of the symplectic group Sp(n,R) decomposes the
space of Fedosov homogeneous structures in irreducible components. The dimension of one
of these components grows linearly with the dimension of the manifold. These homogeneous
structures are called of linear type and we describe them in the last section.

Chapter 6 characterizes proper Riemannian actions when the principal orbits are hypersur-
faces by the existence of a linear connection satisfying a set of covariant equations. We apply
these results to give classifications of cohomogeneity one foliations and give explicit examples
of these objects in the Euclidean space and the real hyperbolic space.

Outcome

The results of this thesis are available at:

[CC20] José Luis Carmona Jiménez and Marco Castrillón López. “Reduction of Homogeneous
pseudo-Kähler Structures by One-Dimensional Fibers”. Axioms 9:(3) (2020). DOI: 10.
3390/axioms9030094.

[CC22a] José Luis Carmona Jiménez and Marco Castrillón López. “The Ambrose-Singer Theorem
for General Homogeneous Manifolds with Applications to Symplectic Geometry”. Mediter-
ranean Journal of Mathematics 19: (2022), p. 280. DOI: 10.1007/s00009-022-02197-x.

[CC22b] José Luis Carmona Jiménez and Marco Castrillón López. “The homogeneous holonomies of
complex hyperbolic space”. Annals of Global Analysis and Geometry 62: (2022), pp. 391–
411. DOI: 10.1007/s10455-022-09852-2.

[CCD23] José Luis Carmona Jiménez, Marco Castrillón López, and José Carlos Díaz-Ramos. “The
Ambrose-Singer theorem for cohomogeneity one manifolds” (2023). arXiv: 2312.16934.

They are organized as follows. The papers [CC22b] and [CC20] are devoted to study pseudo-
Riemannian homogeneous manifold. They collect the results of Chapter 2 and Chapter 3,
respectively. The paper [CC22a] examines the generalization of the Ambrose-Singer Theorem
to non-metric homogeneous manifolds. We split these results in Chapter 4 and Chapter 5. The

https://doi.org/10.3390/axioms9030094
https://doi.org/10.3390/axioms9030094
https://doi.org/10.1007/s00009-022-02197-x
https://doi.org/10.1007/s10455-022-09852-2
https://arxiv.org/abs/2312.16934
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manuscript [CCD23] extends the Tricerri-Vanhecke program to non-transitive actions when the
orbits are hypersufaces. Then, it collects the results of Chapter 6.

Outlook

There are diverse future lines of research related to the results of this thesis:
All the homogeneous descriptions of a manifold: In [CGS13], the authors described

all the homogeneous geometries of the real hyperbolic space. In Ch. 2, we show all the
homogeneous geometries of the complex hyperbolic space.

Open problem 1: Which are all the homogeneous descriptions of the quaternionic
hyperbolic space, real or complex projective spaces, . . . ?

A definition for morphism of AS-manifolds: In Ch. 4, we prove that the class of an
AS-manifold is larger than the class of homogeneous reductive manifolds. Moreover, in that
chapter we define an isomorphism of AS-manifolds that generates a bijective correspondence
with isomorphisms of infinitesimal models, the Nomizu construction and the transvection
construction. The reduction morphism between pseudo-Riemannian manifolds is shown in
Ch. 3.

Open problem 2: Find a definition of morphism of AS-manifolds and morphism
of infinitesimal models such that these two definitions fit into each other.

In particular, this definition enables us to find a way to connect the homogeneous structure
of an intrinsically homogeneous submanifold with the homogeneous structure of the total
homogeneous space. In this line of research not even a definition of morphism of homogeneous
reductive manifolds is given. Therefore, there is a long way to explore.

Study of invariant tensors in homogeneous manifolds: In Ch. 2, we show that the
symmetric description of the complex hyperbolic space of dimension n is the unique description
without an invariant vector field. Meanwhile, the description of the complex hyperbolic space
as a Lie group is the unique description with 2n invariant vector fields. Obviously, if two
homogeneous descriptions have different invariant tensor fields, then necessarily they have to
be different. The question is,

Open problem 3: Is it possible to use the AS-connections to describe the space of
all invariant tensor fields of a Lie group action?

Tricerri-Vanhecke program for non-metric homogeneous structures: In Ch. 5, we start
this program for symplectic manifolds. This can be replicated in other geometries such as
complex, contact, multisymplectic, ... Or combine some of these geometries such as symplectic
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with complex. Moreover, there are some characteristic connections that are related to these
tensors. It should be possible to describe the class of homogeneous structures associated with
these tensors.

Open problem 4: Let (M,∇,K) be an AS-manifold with AS-connection ∇̃. Which
are the invariant classes by the Lie structure group given by K of the AS-tensors
and homogeneous structures?

The description of symplectic non-Fedosov homogeneous structures of linear type: In
Ch. 5, we show that there is a class of almost symplectic homogeneous structures of linear type.
There is a subclass of symplectic homogeneous structures that we can endow with a Fedosov
invariant connection. At the end of that chapter we describe Fedosov homogeneous structures
of linear type. However, there is another non described subclass of almost symplectic (non
Fedosov) homogeneous structures of linear type.

Open problem 5: Give a complete description of almost symplectic homogeneous
structures of linear type.

All the Riemannian cohomogeneity one actions on a manifold: In Ch. 2, we compute
all Kähler homogeneous structures on the complex hyperbolic space. Following these ideas
but with a perspective of cohomogeneity actions, we have that to compute all the (canonical)
cohomogeneity one structures is equivalent to giving a list of cohomogeneity one actions.

Open problem 6: Compute all (canonical) cohomogeneity one structures of the
real hyperbolic space, complex hyperbolic space, spheres, euclidean spaces, ... ?



Chapter 1

Preliminaries

This chapter introduces all the necessary knowledge to face the problems concerning Ambrose-
Singer connections and homogeneous manifolds in this thesis. All the results are summarized
without proof, although they are referenced. Our goal in this chapter is to understand the
classical Ambrose-Singer theorem. To achieve that, there are two main concepts. First, linear
connections are principal connections in the frame bundle, or equivalently, vectorial connections
in the tangent bundle. We start with the perspective of principal bundles and connect this point
of view with vector bundles. Moreover, we introduce parallel transport, holonomy, curvature
and torsion tensors, geodesics, completeness of connections, affine maps, etcetera. Second, a
reductive homogeneous manifold is a homogeneous manifold that satisfies a decomposition
in terms of Lie algebras. This implies the existence of an unique canonical connection such
that the affine maps are the Lie group actions on the manifold. It follows that its covariant
derivative makes its curvature and torsion parallel. Indeed, this canonical connection is an
Ambrose-Singer connection.

In the third section, we present the Ambrose-Singer theorem and its generalizations through-
out history either with a local or global homogeneity condition. After that, we discuss the
principal research program introduced by Franco Tricerri and Lieven Vanhecke in [TV83] and
introduce the homogeneous structure tensor. This project establishes some necessary conditions
for different homogeneous structures to be isomorphic.

Throughout the text, we assume that all objects are differentiable, and manifolds are finite-
dimensional. The procedures and results presented in this chapter can be found in [KN63],
[KN69], [TV83], or [CC19]. Furthermore, we adapt our notation to these books.



2 Preliminaries

1.1 Principal bundles

Definition 1.1.1. Let P and M be manifolds, and let G be a Lie group. A principal bundle
(π : P −→ M,G) (or (P −→ M,G)) is a surjective submersion π : P −→ M together with a free
and C∞ right action of G on P that is transitive on the fibers of π .

We denote by Rg(u) = u ·g the action on the right of G on P and the manifolds P, M and G
are called the total space, the base space and the structure group, respectively. The preimage
π−1(p) of a point p ∈ M is the fiber of p. We recall that an action is said to be free if given
p1 ∈ P with u1 ·g = u1, then g = e is the neutral element of G. Additionally, it is said to be
transitive on the fibers if for every p ∈ P and two u1, u2 ∈ π−1(p), then there exists g ∈ G such
that Rg(u1) = u2.

We assume throughout that the reader is familiar with the definition, basic properties and
constructions concerning vector bundles (see [Hus66, Ch. 3] or [Mic08, Ch. IV]). Although
Def. 1.1.1 does not exhibit the existence of local trivializations, as the vector bundles definition
does, it is an immediate consequence.

Proposition 1.1.2 ([CC19, p. 3, Prop. 1.1.2]). Let (π : P −→ M,G) be a principal bundle.
Given a point p ∈ M, there exists a neighbourhood U of p and a smooth map σ : U −→ π−1(U)

such that π ◦σ = id. Moreover, the map

φ : U ×G −→ π
−1(U)

(p,g) 7−→ σ(p) ·g

is a diffeomorphism satisfying π ◦φ(p,g) = p and φ(p,g ·h) = φ(p,g) ·h.

From Prop. 1.1.2, we have the following identity in terms of dimensions,

dimP = dimM+dimG.

A homomorphism of principal bundles (P1 −→ M1,G1) to (P2 −→ M2,G2) is a pair (Φ,φ)

of a differentiable map Φ : P1 −→ P2 and a homomorphism of Lie groups φ : G1 −→ G2,
making commutative the following diagram,

P1 ×G1 P2 ×G2

P1 P2

(Φ,φ)

·G1 ·G2

Φ
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or equivalently, Φ(u · g) = Φ(u) · φ(g), for all u ∈ P1 and g ∈ G1. Moreover, if Φ is an
embedding and φ a monomorphism, then (Φ,φ) is a principal subbundle. A special case of
subbundles are reductions, that is, subbundles with M1 = M2.

The frame bundle of M, which we denote by (L(M)−→ M,GL(n)), is the main example of
principal bundles. The aim of this section is to provide a detailed exposition of it. In particular,
the next paragraph gives its precise construction.

Let M be a differentiable manifold of dimension n. We consider,

L(M) =
{

u = (p;u1, . . . ,un) : p ∈ M, (u1, . . . ,un) is a basis of TpM
}
,

or equivalently,

L(M) =
{

u : Rn −→ TpM : p ∈ M, u ∈ Isom(Rn,TpM)
}
,

which can be endowed with the structure of a differentiable manifold such that the natural
projection π : L(M)−→ M is a surjective submersion. Let now GL(n) be the Lie group of real
invertible matrices of dimension n, or equivalently, the Lie group of linear isomorphism from
Rn to Rn. We define the action of the Lie group GL(n) on L(M) as follows,

L(M)×GL(n)−→L(M)

((p; u1, . . . ,un),A) 7−→ (p; u1, . . . ,un) ·A =

(
p;

n

∑
i=1

ai1ui, . . . ,
n

∑
i=1

ainui

)

where A = (ai j) ∈ GL(n). Equivalently, we can define the same action as,

L(M)×GL(n)−→L(M)

(u,ϕ) 7−→ u ·ϕ = u◦ϕ

where (ϕ : Rn −→ Rn) ∈ GL(n). Moreover, for all p ∈ M, the action is free and transitive on
every set π−1(p). Let f : M −→ M be a differentiable map. Then, we define the natural lift of
f by,

f̃ : L(M1)−→L(M2)

u 7−→ f∗,π(u) ◦u.
(1.1)

In particular, ( f̃ , Id) defines a homomorphism of principal bundles.
Let us now consider a principal bundle (P −→ M,G) such that its structure group G acts

linearly on the left on a vector space V of finite dimension. Then, an induced right action of G
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on P×V is defined as
(u,ξ ) ·g = (u ·g,g−1 ·ξ ).

The quotient E = P×G V = (P×V )/G together with the projection πE : E −→ M such that
πE([u,ξ ]G) = π(u) is a vector bundle called the associated bundle to (P −→ M,G) with fiber
V .

There exists a correspondence between sections φ : M −→ E of the associated bundle
(E −→ M,V ) and G-equivariant maps Fφ : P −→V . The correspondence is given by

φ(π(u)) = [u,Fφ (u)]G.

This function Fφ is called the G-equivariant map associated with φ .
We now show how to construct T M explicitly based on this perspective and the correspon-

dence explained above. Let (L(M)−→ M,GL(n)) be the frame bundle of M and let V = Rn.
If we consider the natural action of GL(n) on V , then

L(M)×GL(n)Rn

is canonically isomorphic to the tangent bundle by

L(M)×GL(n)Rn −→ T M

[u,ξ ]GL(n) 7−→ u(ξ ),

the inverse of which is
T M −→L(M)×GL(n)Rn

η 7−→ [u,ξ ]GL(n)

where u is a reference such that u(ξ ) = η .
Let Xπ(u) = [u,ξ ]GL(n) = u(ξ ) be a vector field in T M ∼= L(M)×GL(n)Rn, then there exists

a G-equivariant map F : L(M) −→ Rn such that F(u ·g) = g−1 ·F(u). This map is given by
F(u) = u−1 (Xπ(u)

)
. Conversely, for any G-equivariant map F : L(M)−→ Rn, there exists a

vector field Xπ(u) = [u,F(u)]GL(n).
In general, if we take V = (⊗rRn)⊗ (⊗s(Rn)∗) and the natural action of GL(n) on V , then

L(M)×GL(n) ((⊗rRn)⊗ (⊗s(Rn)∗))

is the vector bundle T r
s (M) of (r,s)-tensor fields. Actually, there exists a correspondence

between tensor fields of type (r,s) and G-equivariant functions F : L(M) −→ (⊗rRn)⊗
(⊗s(Rn)∗).
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1.1.1 Connections on Principal Bundles

Given u ∈ P such that π(u) = p, we say that a vector in B ∈ TuP is vertical if π∗(B) = 0
or equivalently, B is in the tangent space of π−1(p). We call vertical subspace on u and
vertical distribution to the sets VuP = ker(π∗ : TuP −→ TpM) and V P = ker(π∗ : T P −→ T M),
respectively.

Definition 1.1.3. A connection (or principal connection) Γ on a principal bundle (P −→ M,G)

is a horizontal distribution HP such that it is G-invariant,

(Rg)∗(HuP) = Hu·gP, u ∈ P, g ∈ G,

and complementary to V P,
TuP = HuP⊕VuP, u ∈ P.

Given Xu ∈ TuP, we can decompose Xu = Xh
u +Xv

u , where Xh
u ∈ HuP and Xv

u ∈VuP denote
the horizontal and vertical part of Xu with respect to Γ, respectively. Let g be the Lie algebra
of G. The fundamental vector field associated with A ∈ g is

A∗
u =

d
dt

∣∣∣
t=0

u · exp(tA), u ∈ P. (1.2)

These vector fields satisfy that,

(Rg)∗(A∗) = (Adg−1(A))∗, g ∈ G, A ∈ g,

[A∗,B∗] = [A,B]∗, A, B ∈ g.

For u ∈ P, the correspondence from A ∈ g to A∗
u defines an isomorphism ψu : g−→VuP. We

can define a 1-form ω on P with values in g such that for every Xu ∈ TuP, ω(Xu) = ψ−1
u (Xv

u ),
that is, ω(Xu) is the unique element A such that A∗

u = Xv
u . This 1-form is called the connection

form of Γ and satisfies,

ω(A∗) = A, A ∈ g,

ω is G-equivariant : (Rg)
∗
ω = Adg−1ω, g ∈ G.

(1.3)

Conversely, for every 1-form on P with values in g and satisfying (1.3), there exists an unique
horizontal distribution HP defining a connection Γ and it is constructed by HuP = ker(ωu).

Let (Φ,φ) be a homomorphism of principal bundles from (P1 −→ M1,G1) to (P2 −→
M2,G2) and two respective connections ω1 (and horizontal distribution HP1) and ω2 (and
horizontal distribution HP2). We say that the homomorphism is preserving the connections if
ω2 ◦Φ∗ = φ∗ ◦ω1 (or equivalently, Φ∗(HP1)⊂ HP2).
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In particular, if (Φ,φ) is a reduction and ω2 a connection on P2, then, we say that ω2 is
reducible to P1 if there exists a connection ω1 such that the reduction sends ω1 to ω2.

Definition 1.1.4. Let Γ be a connection on (P −→ M,G) and ω be the connection form. The
curvature form Ω of Γ is the 2-form on P with values in g given by, Ω(X ,Y ) = dω(Xh,Y h).

Remark 1.1.5. The convention for the exterior derivative d is,

dα(X ,Y ) = X(α(Y ))−Y (α(X))−α([X ,Y ])

where α is a 1-form and X , Y are vector fields.

The curvature form satisfies (Rg)
∗Ω = Adg−1Ω.

Theorem 1.1.6 (Second structure equation, [KN63, p. 77]). Let Ω be the curvature form of Γ

with connection form ω . Then,

Ω(X ,Y ) = dω(X ,Y )+ [ω(X),ω(Y )],

where [ · , · ] is the Lie bracket of the Lie algebra g and X, Y ∈ TuP, u ∈ P. In particular, if X, Y
are horizontal vector fields, then Ω(X ,Y ) =−ω([X ,Y ]).

Note that, the curvature form is the obstruction for the horizontal distribution to be integrable.
This is, Ω = 0 if and only if HP is an integrable distribution.

Theorem 1.1.7 (Second Bianchi’s identity, [KN63, p. 78]). Let Ω be the curvature form of Γ

with connection form ω . Then,
dΩu(Xh,Y h,Zh) = 0,

for all X, Y ∈ TuP, u ∈ P.

1.1.2 Parallel transport and holonomy

Given a vector Xp ∈ TpM, we define the horizontal lift of Xp to the point u ∈ π−1(p) to be the
unique vector Xu ∈ HuP such that π∗(Xu) = Xp. Analogously, given a vector field X ∈ X(M),
we can define its horizontal lift as the unique horizontal vector field X in P with π∗(X) = X .
Let X , Y be two vector fields on M, then

X = (Rg)∗X , g ∈ G,

(λX +µY ) = λX +µY , λ ,µ ∈ R,[
X ,Y

]h
= [X ,Y ].
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Let γ be a piecewise differential curve on P. If its tangent vectors are horizontal, then we
say that is horizontal. Therefore, given a piecewise differential curve τ : [0,1]−→ M, t 7→ τt ,
on M and u ∈ P with τ0 = π(u), then there is an unique horizontal curve τ

u on P, called the
horizontal lift of τ with respect to the connection Γ, such that τ

u
0 = u and π(τu

t ) = τt .

Definition 1.1.8. Let τ : [0,1] −→ M be a piecewise differential curve on M. We define the
parallel transport of Γ along τ as the G-equivariant map,∣∣∣∣τ1

τ0
(τ,Γ) : π

−1(τ0)−→ π
−1(τ1)

u 7−→ τ
u
1

for short we write
∣∣∣∣τ1

τ0
(τ) or

∣∣∣∣τ1
τ0

. We denote by
∣∣∣∣(Γ) the set of all parallel transports of Γ along

any piecewise differential curve on M.

For a deeper discussion of parallel transport, we refer the reader to [Mic08, Ch. IV].
Let p ∈ M be a point and we denote by C(p) and C0(p) the sets of all C∞ loops and

contractible C∞ loops based at p, respectively.

Definition 1.1.9. Let Γ be a connection on a principal bundle (P −→ M,G) and let p ∈ M. The
holonomy group of Γ at p is

Hol(p,Γ) =
{∣∣∣∣p

p(τ) : π
−1(p)−→ π

−1(p) : τ ∈C(p)
}

and the restricted holonomy group of Γ at p is

Hol0(p,Γ) =
{∣∣∣∣p

p(τ) : π
−1(p)−→ π

−1(p) : τ ∈C0(p)
}
.

For short, we denote these two by Hol(p) and Hol0(p), respectively.

Remark 1.1.10. The holonomy group is a group with the composition of maps and the restricted
holonomy group is a subgroup.

Let u ∈ π−1(p) be a fixed point. Then, we can consider the following homomorphisms of
groups,

Λu : Hol(p)−→ G∣∣∣∣p
p(τ) 7−→ g

such that,
(∣∣∣∣p

p(τ)
)
(u) = u · g. The image of Λu is the subgroup Hol(u) of G called the

holonomy group of Γ with base point u ∈ P. With an analogous procedure, we define Hol0(u) =
Λu(Hol0(p)), the restricted holonomy group of Γ with base point u ∈ P. If u is connected with
v by a horizontal curve, then Hol(u) = Hol(v).
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Theorem 1.1.11 ([KN63, pp. 73-75]). Let Γ be a connection on a principal bundle (P −→
M,G) where M is connected. Let Hol(u) and Hol0(u) be the holonomy and the restricted
holonomy groups of Γ with base point u ∈ P, respectively. Then,

1. Hol0(u) is a Lie subgroup of G.

2. Hol0(u) is a normal subgroup of Hol(u) and Hol(u)/Hol0(u) is countable.

As consequence of these two, Hol(u) is a Lie subgroup of G.

Let u ∈ P be a fixed point. We can consider the set,

P(u) =
{

v ∈ P :
(∣∣∣∣τ1

τ0
(τ)
)
(u) = v

}
.

It is straightforward to check that (P(u)−→ M,Hol(u)) is a principal bundle, it is called the
holonomy bundle of Γ with base point u ∈ P.

Let (P −→ M,G) be a principal bundle, u,v ∈ π−1(p), and g ∈ G such that v = u ·g. Then
P(v) = P(u) · g and Hol(v) = g−1 ·Hol(u) · g, that is, there is a homomorphism between
different holonomy bundles.

Theorem 1.1.12 (Reduction theorem, [AS53], [KN63, pp. 83-85]). Let Γ be a connection on
a principal bundle (P −→ M,G) and let u ∈ P. Then, (P(u)−→ M,Hol(u)) is a reduction of
(P −→ M,G) and the connection Γ is also reducible.

Theorem 1.1.13 (Holonomy theorem, [AS53], [KN63, pp. 89-90]). Let Γ be a connection on a
principal bundle (P −→ M,G) and let u ∈ P. Let Ω be the curvature form of Γ and (P(u)−→
M,Hol(u)) be the holonomy bundle. Then, the Lie algebra of Hol(u) is the subalgebra
hol(u)⊂ g spanned by all elements of the form Ωv(X ,Y ), X, Y ∈ TvP, with v ∈ P(u).

1.1.3 Linear connections

Linear connections are intimately related to vectorial connections in the tangent bundle, princi-
pal connections in the frame bundle or covariant derivatives in the tangent bundle. The purpose
of this section is to connect these three points of view of linear connections.

Let (πE : E −→ M,V ) be a vector bundle. The vertical distribution is V E = ker((πE)∗),
that is, the tangent space to the fibers at every point of E. A connection on a vector bundle ΓV

(see [Lee09, Def. 12.12]) is a distribution HE on E such that,

• it is complementary to the vertical distribution, that is, T E = HE ⊕V E,
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• for every point (p,v) ∈U ×V (a local trivialization), HE is invariant by multiplication,

(µr)∗HE(p,v) = HE(p,r·v)

where µr(p,v) = (p,r · v).

The subbundle HE is called the horizontal distribution.
Let Γ be a principal connection on (P −→ M,G), let V be a vector space such that G acts

linearly on the left on V and let (πE : E −→ M,V ) be the associated bundle. For ξ ∈V a fixed
point, we consider the natural projection,

Φξ : P −→ E = P×G V

u 7−→ [u,ξ ]G.

Then, we consider the horizontal distribution HE = ∪ξ∈V (Φξ )∗(HP) associated with Γ with
decomposition TwE = HwE ⊕VwE for every w ∈ E. This horizontal distribution on E defines a
connection ΓV on the vector bundle (E −→ M,V ).

Parallel transport for vector bundles has an analogous definition to that of principal bundles;
a classical reference here is [Mic08, Ch. IV]. We denote the parallel transport of ΓV a long a
curve τ : [0,1]−→ M as

∣∣∣∣τ1
τ0
(τ), or

∣∣∣∣τ1
τ0

.

Remark 1.1.14. [KN63, p. 87] Summarising, given a principal connection Γ on a principal
bundle (P −→ M,G) and let V be a vector space such that G acts linearly on the left, then in
the associated bundle (E = P×G V −→ M,V ) there exists an unique connection ΓV such that
the following diagram is commutative

π−1(τ0) π−1(τ1)

π
−1
E (τ0) π

−1
E (τ1)

∣∣∣∣∣∣τ1

τ0
(τ,Γ)

Φξ Φξ∣∣∣∣∣∣τ1

τ0
(τ,ΓV )

, ξ ∈V.

Definition 1.1.15. A linear connection is a principal connection on the frame bundle.

In particular, every linear connection induces a connection and parallel transport on the
tangent bundle. Conversely, given a connection ΓV in the tangent bundle, we can induce a
parallel transport given by: if

∣∣∣∣τ1
τ0

: Tτ0M −→ Tτ1M is the parallel transport a long τ , then∣∣∣∣τ1
τ0

: π−1(τ0)−→ π−1(τ1) such that u 7→
∣∣∣∣τ1

τ0
◦u.
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Definition 1.1.16. A covariant derivative ∇ on a vector bundle (E −→ M,V ) is a map,

X(M)×Γ(E)−→ Γ(E)

(X ,r) 7−→ ∇X r

satisfying,

1. ∇X(λ r+µs) = λ∇X r+µ∇X s, λ ,µ ∈ R.

2. ∇ f X r = f ∇X r, f ∈ C∞(M).

3. ∇X( f r) = f (p)∇X r+X( f )r, f ∈ C∞(M).

4. ∇X+Y r = ∇X r+∇Y r.

where X , Y ∈ X(M) and r,s ∈ Γ(E).

The following Theorem states that there exists a correspondence between connections
on vector bundles and covariant derivatives on vectors bundles. From now on, we denote
connections and covariant derivatives on vector bundles with the same character ∇.

Theorem 1.1.17 ([Lee09, p. 520, Thm. 12.32]). Let Γ be a connection on a vector bundle
(E −→ M,V ). Then, there exists an unique covariant derivative ∇ such that

∇X φ : M −→ E

p 7−→ ∇Xpφ

where φ ∈ Γ(E) and

∇Xpφ = lim
t−→0

1
t

(∣∣∣∣τ0
τt
(τ,Γ)(φ(τt))−φ(τ0)

)
with τt is a curve on M such that τ0 = p and Xp = τ̇0. Conversely, given a covariant derivative
∇ on a vector bundle (E −→ M,V ), then there exists an unique connection Γ such that

HwE = {φ∗,p(X) ∈ TwE : φ ∈ Γ(E), φ(p) = w, (∇X φ)p = 0, p ∈ M}.

The relation between principal connections and covariant derivative on its associated vector
bundles is given below.

Proposition 1.1.18 ([KN63, p. 116, Prop. 1.3]). Let Γ be a connection on (L(M)−→M,GL(n))
and V be a vector space such that GL(n) acts linearly on the left. Let φ be a section of the
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associated vector bundle (E −→ M,V ) and let ∇ be the covariant derivative associated with
ΓV (the associated vectorial connection). Then, for any X ∈ X(M), the GL(n)-equivariant
function F∇X φ associated with ∇X φ is

F∇X φ = X(Fφ )

where X is the horizontal lift of X to P and Fφ is the GL(n)-equivariant funtion associated
with φ .

Remark 1.1.19. Prop. 1.1.18 is in general true for arbitrary principal bundles and their associated
vector bundles.

Now, we define some geometric tensors that live only in the frame bundle. First, the
canonical form (or contact form) θ of L(M) is the Rn-valued 1-form given by

θ(Xu) = u−1(π∗(Xu)), Xu ∈ TuL(M), u ∈ L(M).

It satisfies R∗
gθ = g−1 ·θ for all g ∈ GL(n). Second, for every η ∈ Rn, there exists an unique

horizontal vector field, called standard vector field associated with η , B(η)u ∈ TuL(M) such
that π∗(B(η)) = u(η) for all u∈L(M). This vector field satisfies θ(B(η)) =η , (Rg)∗(B(η)) =

B(g−1η) for all g ∈ GL(n) and for any A∗ ∈ gl(n,R), [A∗,B(η)] = B(Aη). Additionally, the
infinitesimal version of these natural lifts in L(M) depends on the canonical form.

Lemma 1.1.20 ([CC19, p. 36]). Let X be a vector field on M. Then there exists an unique
vector field X̃ on L(M) satisfying

1. X̃ is invariant under the right action of GL(n).

2. LX̃ θ = 0.

3. π∗(X̃u) = Xπ(u), for all u ∈ L(M).

We say that X̃ is the natural lift of X . And if Xp = d
dt

∣∣
t=0 ft(p), then X̃u = d

dt

∣∣
t=0 f̃t(u),

where f̃ is the natural lift of ft to L(M).

Definition 1.1.21. Let Γ be a linear connection on (L(M)−→ M,G) and θ its canonical form.
The torsion form Θ of a linear connection Γ is the 2-form on L(M) with values in Rn given by,
Θ(X ,Y ) = dθ(Xh,Y h).

In particular, R∗
gΘ = g−1 ·Θ for all g ∈ GL(n).
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Theorem 1.1.22 (First structure equation, [KN63, p. 120]). Let Θ be the torsion form of Γ with
canonical form θ and connection form ω . Then,

Θu(X ,Y ) = dθ(X ,Y )+ω(X) ·θ(Y )−ω(Y ) ·θ(X)

for all X, Y ∈ TuL(M), u ∈ L(M). In particular, if X, Y are horizontal vector fields, then
Θ(X ,Y ) =−θ([X ,Y ]).

The torsion form of a connection measures how horizontal vectors rotate with parallel
transport along horizontal curves.

Theorem 1.1.23 (First Bianchi’s identity, [KN63, p. 121]). Let Θ be the torsion form of a
linear connection Γ with connection form ω and canonical form θ . Then,

(dΘ)u(Xh,Y h,Zh) = +(Ω∧θ)u(X ,Y,Z)

= Ωu(X ,Y ) ·θu(Z)+Ωu(Z,X) ·θu(Y )+Ωu(Y,Z) ·θu(X),

for all X, Y , Z ∈ TuL(M), u ∈ L(M).

We define the curvature tensor field of ∇ as the (1,3) tensor fields

R(X ,Y )Z = ∇[X ,Y ]Z −∇X(∇Y Z)+∇Y (∇X Z),

and the torsion field of ∇ as the (1,2)-tensor field

T (X ,Y ) = ∇XY −∇Y X − [X ,Y ].

Proposition 1.1.24 ([KN63, p. 133]). Let ∇ be a linear connection on M. Then,

• The GL(n)-equivariant function associated with the torsion tensor field R of ∇ is

r : L(M)−→ (⊗3(Rn)∗)⊗Rn

u 7−→
(
(η ,ξ ,ζ ) 7→ Ωu

(
B(η)u,B(ξ )u

)
·ζ
)
.

• The GL(n)-equivariant function associated with the torsion tensor field T of ∇ is

t : L(M)−→ (⊗2(Rn)∗)⊗Rn

u 7−→
(
(η ,ξ ) 7→ Θu

(
B(η)u,B(ξ )u

))
.
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A curve γ : I −→ M, where I is an open interval in R, is called a geodesic if the vector field
Xγt0

= γ̇t is parallel along γ , or equivalently, if

∇X X = 0.

Moreover, it is complete if I =R. A complete connection is a linear connection whose geodesics
are complete. In particular,

Proposition 1.1.25 ([KN63, Prop. 6.5]). A linear connection is complete if and only if every
standard vector field on L(M) is complete.

Definition 1.1.26. Let (M1,∇1) and (M2,∇2) be two manifolds with two linear connections.
We call f : M1 −→ M2 an affine diffeomorphism if it is a diffeomorphism and one of the
following three happens

• The map f∗ : T M1 −→ T M2 takes horizontal curves to horizontal curves.

• The map f∗ : T M1 −→ T M2 satisfies f∗((∇1)XY ) = (∇2) f∗X f∗Y .

• The natural lift f̃ : L(M1)−→L(M2) restricts to f̃ : P(u0)−→P( f̃ (u0)).

In particular, affine maps preserve the curvature, the torsion and the geodesics.

1.1.4 Local coordinates

We express the canonical form θ and the connection form ω in terms of local coordinate systems.
Let χ : V ⊂Rn −→U ⊂ M be a surjective chart with local coordinate system χ = (x1, . . . ,xn).
We define,

σ : U −→L(M)

p 7−→ χ∗,x =

(
p;

∂

∂x1
, . . . ,

∂

∂xn

)
where x= χ−1(p). This map is a section of the frame bundle and we can define the trivialization
given by,

φ : U ×GL(n)−→ π
−1(U)

(p,ψ) = (p,A = (a j
i )) 7−→ χ∗ ◦ψ =

(
σ(p);∑

i
ai

1
∂

∂xi
, . . . ,∑

i
ai

n
∂

∂xi

)
.
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Then, the canonical form θU×GL(n) = φ∗θ has the expression in the coordinate system
induced by χ (cf. [KN63, p. 140]),

θ(p,ψ) = ψ
−1 ◦σ(p)−1 ◦π∗ ◦ (φ)∗,(p,ψ)

= ψ
−1 ◦σ(p)−1 ◦ (πU)∗,(p,ψ)

where πU : U ×GL(n) −→ U is the natural projection. Or equivalently, let A ∈ GL(n) such
that A = (a j

i ) and A−1 = (b j
i ). Then,

θ(p,A) =
n

∑
i=1

θ
i
(p,A)ei

where

θ
i
(p,A) =

n

∑
j=1

bi
jdx j.

Consider ω the connection form and let {E j
i } be a basis of g, where E j

i is the zero matrix
with a one only in the position (i, j) where i is the row and j is the column. Then, we can
decompose,

ω =
n

∑
i, j=1

ω
i
jE

j
i .

Then, we define the components of the connection Γ (or the Christoffel symbols of Γ) with

respect to the coordinate system χ = (x1, . . . ,xn) as the maps Γi
k j(p) = ω i

j

(
σ∗
(

∂

∂xk

)
p

)
.

According to this notation, the connection form ωU×GL(n) = φ∗ω has the expression in the
coordinate system χ (cf. [KN63, p. 140]),

ω(p, id)

(
∂

∂xk
+(Es

r)
∗
)
=

n

∑
i, j=1

Γ
i
k jE

j
i +Es

r

ω(p,A)

(
∂

∂xk
+(Es

r)
∗
)
=

n

∑
i, j=1

Γ
i
k j

(
AdA−1 ·E j

i

)
+Es

r

where (E j
i )

∗
(p,B) =

d
dt

∣∣
t=0(p,Bexp(tE j

i )). The second row comes from (RA)∗
(

∂

∂xk

)
=
(

∂

∂xk

)
for all k ∈ {1, . . . ,n}.

Theorem 1.1.27 ([KN63, p. 145]). Let χ = (x1, . . . ,xn) be a coordinate system of M and Γ be
a linear connection. Then, the Christoffel symbols Γi

k j of Γ with respect to χ are given by,

∇ ∂

∂xk

∂

∂x j
=

n

∑
i=1

Γ
i
k j

∂

∂xi
.
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1.2 Reductive Homogeneous Manifolds

Dedicated to Oldřich Kowalski.

Definition 1.2.1. A homogeneous manifold is a quotient G/H of a Lie group G by a closed
subgroup H, endowed with the unique differentiable structure making π : G −→ G/H a sub-
mersion.

The Lie group G acts on the left on the differentiable manifold M = G/H as,

g1 · [g2]H = [g1 ·g2]H ,

for all g1 ∈ G and [g2]H ∈ G/H. The action above is C∞ and transitive.
Conversely, if M is a differentiable manifold and G is a Lie group acting on the left on M in

such a way that the action is C∞ and transitive, then we can consider the isotropy group at any
point p ∈ M,

Hp =
{

h ∈ G : h · p = p
}
,

which is a closed subgroup of G, and the map

G/Hp −→ M

[g]H 7−→ g · p

defines a diffeomorphism between G/Hp and M.
Therefore, Def. 1.2.1 is equivalent to the following Definition:

Definition 1.2.2. A homogeneous manifold M is a differentiable manifold such that there exists
a Lie group G acting on the left on M and the action is C∞ and transitively.

Remark 1.2.3. The uniqueness of this differentiable structure in Def. 1.2.1 comes from [Che46,
pp. 109-111]. Moreover, he also proves that the action is not just C∞, it is also real analytic.

Most of the classical manifolds that have been studied are homogeneous, for example,

• Lie groups: Rn, Cn, Tn, . . .

• Spheres: Sn = SO(n+1)/SO(n).

• Hyperbolic spaces: Hn = SO(n,1)/SO(n).
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• Projective spaces: CPn =U(n+1)/U(n)×U(1).

• Real Grassmannians: SO(p+q)/SO(p)×SO(q).

• Complex Grassmannians: U(p+q)/U(p)×U(q).

We denote by Lg(p) or g · p the action of an element g ∈ G on p ∈ M. We say that the action
of G in M is effective if the normal Lie subgroup of G,

N =
{

g ∈ G : Lg = IdM

}
is the identity. We can certainly assume that G acts effectively on M, if not, we shall replace G
by G/N. From now on, we consider G a Lie group acting transitively and effectively on M.

Definition 1.2.4. Let M be a manifold and P1, . . . ,Pr, r ∈ N, be a finite set of tensor fields on
M. We say that (M,P1, . . . ,Pr) is homogeneous if there exists a Lie group G acting C∞ and
transitively on M and preserving the tensor fields P1, . . . ,Pr.

Note that Def. 1.2.4 is a sharpened version of pseudo-Riemannian homogeneous manifolds
when P1 = g is a metric tensor. Moreover, if we consider a pseudo-Hermitian manifold (M,g,J)
(see Sec. 2.1), the additional structure is defined by two tensors, P1 = g the metric and P2 = J the
complex tensor. Thus, Def. 1.2.4 also generalized the classical definition of pseudo-Hermitian
homogeneous manifold.

Remark 1.2.5. In this thesis, for the sake of brevity and simplicity, we consider M with one
tensor K = (P1, . . . ,Pr) instead of a finite set of tensors, the following results being analogous
for (P1, . . . ,Pr).

The advantage of using this philosophy of homogeneous manifolds leaving a tensor field
invariant is the fact that we can use this definition indistinctly for metric and non-metric
manifolds. For example, if K = ω is a non-degenerate two form, then (M,ω) would be an
almost symplectic homogeneous manifolds. Moreover, when ω is closed, it is a symplectic
homogeneous manifold, see Sec. 5.1. In general, most examples of differentiable manifolds are
equipped with additional tensors, that is, pseudo-Riemannian, symplectic, complex, pseudo-
Kähler, para-Kähler, contact metric, . . .

In a more general setting,

Definition 1.2.6. A manifold (M,K) is locally homogeneous if there is a Lie pseudo-group
acting C∞ and transitively on M and preserving the tensor field K.

Recall that, a pseudo-group (see [Spi92]) is a collection of local diffeomorphisms G acting
on M, ϕ : Uϕ −→ ϕ(Uϕ)⊂ M such that:
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• Identity: IdM ∈ G.

• Inverse: If ϕ ∈ G, then ϕ−1 ∈ G.

• Restriction: If ϕ ∈ G, ϕ : U −→ M and V ⊂U , then ϕ|V ∈ G.

• Continuation: If dom(ϕ) =
⋃

Uk and ϕ|Uk ∈ G, then ϕ ∈ G.

• Composition: If ϕ,ψ ∈ G and im(ϕ)⊂ dom(ψ), then ψ ◦ϕ ∈ G.

Let us consider that if G is a pseudo-group and there exists a non-zero tensor field K such that
every local diffeomorphism f ∈ G satisfies,

f∗K = K,

that is, the elements of the pseudo-group G are solutions of a system of PDEs. Thus, G is
a Lie pseudo-group. Otherwise, if K = {0}, then we only consider the case when G is a
Lie pseudo-group. We refer the reader to [Spi92] or [Acc21] for a formal definition and an
exposition of this topic. In particular, a Riemannian manifold is locally homogeneous if the
pseudo-group of local isometries acts transitively on it.

A symmetric space is a homogeneous manifold G/H with an involutive automorphism
σ ̸= idG of G such that σ(h) = h for all h ∈ H. Let g and h be the Lie algebras of G and
H, respectively. We consider σ∗,e : g −→ g the differential map of σ in the neutral element
e ∈ G. Since σe,∗ is involutive, we decompose g= h+m as the eigenspace for 1 (this is, the
Lie algebra h) and −1, respectively. This is called the Cartan decomposition of the symmetric
space (G/H,σ). In particular, this decomposition satisfies the following equalities:

[h,h]⊂ h, [h,m]⊂m, [m,m]⊂ h. (1.4)

The classical work here is [KN69, Ch. XI]. Symmetric spaces are a special type of homogeneous
manifolds.

Definition 1.2.7. Let M = G/H be a homogeneous manifold. We say M is a reductive
homogeneous manifold if the Lie algebra g of G can be decomposed as g= h⊕m, where h is
the Lie algebra of H and m is an Ad(H)-subspace, that is, Adh(m)⊂m for all h ∈ H.

The condition Adh(m)⊂m, for all h ∈ H implies [h,m]⊂m. The converse is true if H is
connected. This definition shows that every symmetric manifold is reductive homogeneous
with the Cartan decomposition.
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When reductive homogeneous manifolds are considered, we can identify m with any TpM,
for all p ∈ M. The identification is given by the isomorphism,

m−→ TpM

X 7−→ d
dt

∣∣∣
t=0

exp(tX) · p.

We usually relate m with the tangent space in the neutral element eH. In general, if we take
X ∈ g we can define a vector field

X∗
p =

d
dt

∣∣∣
t=0

exp(tX) · p

which is called the infinitesimal generator of X . These vector fields satisfy,

(Lg)∗(X∗) = (Adg(X))∗, g ∈ G, X ∈ g,

[X∗,Y ∗] =−[X ,Y ]∗, X , Y ∈ g.

Additionally, if we have a basis {X1, . . . ,Xn} of m, then {(X1)
∗
p, . . . ,(Xn)

∗
p} defines a basis of

TpM for any p ∈ M.
Besides that, every Riemannian homogeneous manifold is reductive [CC19, p. 36] and

the construction of the Lie algebra decomposition is very useful to understand why this does
not work in general, for example, in pseudo-Riemannian geometry. However, in the proof
of [CC19, p. 36], we can realize that most pseudo-Riemannian homogeneous manifolds are
reductive. In details, if we have a M = G/H a pseudo-Riemannian homogeneous manifold
with signature (r,s), then we can consider the non-degenerate symmetric bilinear form on g

defined by
φ(X ,Y ) =−B(AX∗,AY ∗),

where B is the killing form of so(r,s) and AX∗ = LX∗ −∇X∗ is called the Kostant operator with
∇ the Levi-Civita connection. If φ is non-degenerate on h, then we can consider

m= h⊥ =
{

X ∈ g : φ(X ,h) = 0
}

and g= h+m is a reductive decomposition. As B is non-degenerate, then φ would be degenerate
on h if and only if the subspace {AX∗ : X ∈ h} ⊂ so(r,s) is degenerate.

We consider the Grassmannian Gr(h,so(r,s)) where dim{AX∗ : X ∈ h} = l; then the
submanifold defined by all degenerate subspaces of so(r,s) has dimension less than the Grass-
mannian. Therefore, we shall think that there are much more reductive than non-reductive
homogeneous manifolds. Nevertheless, this conclusion is not clear at all, because the Grass-
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mannian does not coincide with the class of homogeneous manifolds. For a deeper discussion
of non-reductive homogeneous manifolds, we refer the reader to [CC19, Ch. 7].

Example 1.2.8. Finally, we show a concrete non-metric example. In particular, it is related to
the key word "special symplectic holonomy". We follow [Sch94, Example 2.1]. Let

G =


 A

x
y

0 0 1

 : A ∈ Sp(2,R), x, y ∈ R


be the group of unimodular motions of R2. Its Lie algebra g is generated by,

Z0 =
9
4

E23, Z1 =−3
2
(E13 −E21),

Z2 =−3(E11 −E22), Z3 =−18E12,

and
Y = 2E13 +E21

where Ei j is the 3×3-matrix with 1 in the position (i, j) and all other entries are zero. Now, we
compute its Lie brackets,

[Z0,Z1] = 0, [Z0,Z2] =−3Z0, [Z0,Z3] =−9Z1 +
27
2

Y, [Z0, Y ] = 0,

[Z1,Z2] =−3Z1 −
9
2

Y, [Z1,Z3] =−9Z2, [Z1, Y ] = 2Z0,

[Z2,Z3] =−6Z3, [Z2, Y ] = 4Z1,

[Z3, Y ] = 6Z2.

We can decompose g = h+m, where h = span{Y} and m = span{Z0,Z1,Z2,Z3}. If we
consider H = {exp(tY ) : t ∈ R}, then H is a connected and closed subgroup of G. Therefore,
as a consequence of [h,m]⊂m, the homogeneous manifold M = G/H is reductive with Lie
algebra decomposition g= h+m.

Furthermore, we can endow this manifold M with a symplectic tensor, see Sec. 5.1. We
consider the almost symplectic tensor element of m,

ωa = 3az0 ∧ z3 −az1 ∧ z2

for a ∈ R−{0} and {z0,z1,z2,z3} is a dual basis of {Z0,Z1,Z2,Z3}. As a consequence of
[h,ω] = 0 and the identification above m= TeHM, then we can define a left invariant almost
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symplectic form on M,

(ωa)p(X ,Y ) = (ωa)eH ((Lg)∗X ,(Lg)∗Y ) ,

that is, M is a homogeneous almost symplectic manifold. This example follows in Ex. 1.2.17.

1.2.1 The canonical connection

Definition 1.2.9. A linear connection ∇ on M = G/H is G-invariant if and only if Lg is an
affine map for any g ∈ G, or equivalently, its natural lift L̃g maps P(u0) to P(L̃g(u0)) for any
u0 ∈ L(M).

The aim of this section is to introduce a few essential aspects of the theory of invariant
connections. In particular, the definition and properties of the canonical connection. In the first
instance, we do a preparation that does not involve invariant connections.

Note that (G −→ G/H,H) is a principal bundle. We claim that it is a reduction of the frame
bundle L(M) for M = G/H. We consider the Lie group homomorphism,

H −→ Aut(ToM)

h 7−→ (Lh)∗,o

where o = [e]H ([e]H is the projection of the neutral element of G onto M) and Aut(ToM) is the
group of linear automorphism of ToM. This group homomorphism is called the linear isotropy
representation of H on M. Note that, if the isotropy representation is faithful, or equivalently,
if the action of G on L(M) is free, then the action of G on M is effective. If G is a group that
acts as isometries, or at least preserves a connection, then the linear isotropy representation
is necessarily faithful. This scenario is precisely the case we are considering in our study.
Therefore, from now on, we assume that the isotropy representation is faithful.

Let u0 ∈ L(M) be a reference with π(u0) = o. Then, we can identify Rn with ToM via
the linear isomorphism given by u0, and we can view the linear isotropy representation as the
homomorphism,

ϕ : H −→ GL(n)

h 7−→ (u0)
−1 ◦ (Lh)∗,o ◦u0.

We denote by λ the corresponding homomorphism of Lie algebras λ : h−→ gl(n) such that
λ = ϕ∗,e. In particular, as the isotropy representation is faithful, the map ϕ : H −→ ϕ(H) is a
Lie group isomorphism. Moreover, the Lie group G is included in L(M) via the differentiable
map g 7−→ L̃g(u0) and, analogously, this map is injective because the action is free. Note that
this identification depends on the choice of u0.
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This construction shows that any linear invariant connection reduces to (G −→ G/H,H),
and to clarify the converse question for reductive homogeneous manifolds, we introduce the
following theorem.

Theorem 1.2.10 ([Nom54, p. 43, Thm. 8.1]). Let M = G/H be a reductive homogeneous
manifold with reductive decomposition g= h+m. Then, there is a bijective correspondence
between invariant connections on (L(M) −→ M,GL(n)) and linear maps Λm : m −→ gl(n)
such that,

Λm(Adh(X)) = Adλ (h)(Λm(X)), X ∈m, h ∈ H.

The correspondence can be read from

ωu0(X̃∗
o ) =

{
Λm(X), X ∈m

λ (X), X ∈ h

where ω is the connection form on (L(M)−→ M,GL(n)).

Definition 1.2.11. The invariant connection associated with the linear map Λm = 0 is called
the canonical connection associated with the reductive decomposition g= h+m.

This connection is the only one that satisfies some classical properties. The best general
reference here is [KN69, Ch. X], and complementary to this reference see [Kow80, Ch. I] (but
avoid the section "Algebraic characterization" because the main theorem is wrong).

Proposition 1.2.12 ([KN69, p. 192, Prop. 2.4]). Let ft(p) = exp(tX) · p be the flow of the
infinitesimal generator X ∈ m and let f̃t be the natural lift. Then, the canonical connection
on M = G/H associated with the reductive decomposition g= h+m is the unique invariant
connection such that the orbit f̃t(u0) is horizontal.

As a consequence, for any fixed p ∈ M, an integral curve αt = exp(tX) · p satisfies that
parallel transport along αt is given by the linear map (Lexp(tX))∗ on p and αt is a complete
geodesic.

Let now (M,∇) be a connected manifold with a linear connection ∇ and let P(u0)⊂ L(M)

be the holonomy bundle, for a fixed u0 ∈ L(M). We define the Lie group of transvections
Tr(M,∇) as the group of affine diffeomorphisms f of M such that its natural lifts (see Eq. (1.1))
f̃ leave every holonomy bundle invariant P(u) ⊂ L(M), for all u ∈ L(M). Note that, in
particular, the group of transvections is a normal connected subgroup of the group of affine
diffeomorphisms (see [Kow80, p. 36]).

An affine transformation f of (M,∇) belongs to Tr(M,∇) if and only if for every point
p ∈ M there is a piecewise differential curve α joining p with f (p) such that the tangent map
f∗ : TpM −→ Tf (p)M coincides with the parallel transport along α .



22 Preliminaries

Theorem 1.2.13 ([Kow80, Thm. I.25]). Let (M, ∇̃) be a connected manifold with a linear
connection. Then the following two conditions are equivalent:

• The transvection group Tr(M, ∇̃) acts transitively on each holonomy bundle P(u) ⊂
L(M).

• M can be expressed as a reductive homogeneous space G/H with respect to a reductive
decomposition g= h+m, where G is effective on M, and ∇̃ is the canonical connection.

From this theorem, we deduce: If M is a reductive homogeneous space, then, for every
piecewise differential curve α joining p with q there exists a global transvection f such that
f (p) = q and the tangent map f∗ : TpM −→ TqM coincides with the parallel transport of the
canonical connection along some α .

In Sec. 1.1, we showed that parallel transport is intimately related to covariant deriva-
tives. Therefore, we exhibit some necessary conditions in terms of covariant derivatives for a
connection to be the canonical connection.

Proposition 1.2.14 ([CC19, p. 39]). Let K be a tensor field on M such that K is invariant under
the action of G. Then, the tensor field K is parallel with respect to the canonical connection,
that is,

∇̃K = 0.

In particular, the curvature and torsion of the canonical connection are very rigid.

Theorem 1.2.15 ([KN69, pp. 190-193]). Let M = G/H be a reductive homogeneous manifold
with reductive decomposition g = h+m and let ∇̃ be the canonical connection. Then, the
torsion and curvature tensors of ∇̃ at o = [e]H are given by,

T̃o(X ,Y ) =−[X ,Y ]m, X , Y ∈m,

R̃o(X ,Y )Z =−[[X ,Y ]h,Z], X , Y, Z ∈m.

Furthermore, the torsion and curvature tensors are invariant, that is,

∇̃T̃ = 0, ∇̃R̃ = 0. (1.5)

In the following theorem, we show the converse question: When is a connection satisfying
the necessary conditions, that is, Equations (1.5), a canonical connection?

Theorem 1.2.16 ([KN69, Thm. 2.8]). Let M be a connected and simply-connected manifold.
Then, the following assertions are equivalent:
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• The manifold M is reductive homogeneous.

• The manifold M admits a complete linear connection ∇̃ satisfying:

∇̃R̃ = 0, ∇̃T̃ = 0,

where R̃ and T̃ are the curvature and torsion tensor fields of the connection ∇̃.

In order to compute the covariant derivative of the canonical connection, we can use the
following equation at the point o = [e]H (cf. [KN69, p. 188-192] or [TV83, p. 20] ),

∇̃XY =−[X ,Y ]m, X , Y ∈m (1.6)

or equivalently,
∇̃X∗

o Y ∗
o = [X∗

o ,Y
∗
o ].

Example 1.2.17. We continue with the Ex. 1.2.8. We now compute the curvature, torsion and
covariant derivative of the canonical connection. First, we have that,

∇̃Z∗
0
Z∗

0 = 0, ∇̃Z∗
0
Z∗

1 = 0, ∇̃Z∗
0
Z∗

2 = 3Z∗
0 , ∇̃Z∗

0
Z∗

3 = 9Z∗
1 ,

∇̃Z∗
1
Z∗

0 = 0, ∇̃Z∗
1
Z∗

1 = 0, ∇̃Z∗
1
Z∗

2 = 3Z∗
0 , ∇̃Z∗

1
Z∗

3 = 9Z∗
1 ,

∇̃Z∗
2
Z∗

0 =−3Z∗
0 , ∇̃Z∗

2
Z∗

1 =−3Z∗
0 , ∇̃Z∗

2
Z∗

2 = 0, ∇̃Z∗
2
Z∗

3 = 6Z∗
3 ,

∇̃Z∗
3
Z∗

0 =−9Z∗
1 , ∇̃Z∗

3
Z∗

1 =−9Z∗
1 , ∇̃Z∗

3
Z∗

2 =−6Z∗
3 , ∇̃Z∗

3
Z∗

3 = 0.

Secondly, using Thm. 1.2.15, we compute the torsion and curvature of ∇̃ in m,

T̃ = 3z0 ∧ z2 ⊗Z0 +9z0 ∧ z3 ⊗Z1 +3z1 ∧ z2 ⊗Z0 +9z1 ∧ z3 ⊗Z1 +6z2 ∧ z3 ⊗Z3

and

R̃XY =
−9
2a

ω(X ,Y )


0 −2 0 0
0 0 −4 0
0 0 0 −6
0 0 0 0

 ∈ End(m).
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1.3 On the history of Ambrose-Singer Theorems

Dedicated to Franco Tricerri and his family.

This section focuses on the hierarchy of homogeneous or locally homogeneous Riemannian
manifolds. This is, Riemannian manifolds with a transitive and invariant action given by a Lie
group or a Lie pseudo-group. In this setting, there are "three kings or queens": the Euclidean
space, the sphere, and the real hyperbolic space. These are the only three Riemannian complete,
connected, and simply connected space forms, which means they have constant sectional
curvature.

The Euclidean space is the archetype of a differentiable manifold with constant sectional
curvature equal to zero. This means that its geometry aligns perfectly with Euclid’s postulates.
The Sphere is an example with positive sectional curvature and describes elliptic geometry.
The Hyperbolic space provides an example of a Riemannian manifold with negative sectional
curvature.

These three models have many symmetries, that is, the group of isometric motions is very
large. In particular, they are Riemannian symmetric spaces. This introduces the second class of
hierarchy, symmetric spaces, that is "the royal family". The study of symmetric manifolds has
led to many deep and far-reaching results in geometry and topology, including the classification
of compact symmetric spaces, the existence of minimal immersions into spheres, and the study
of harmonic maps between symmetric spaces. Moreover, symmetric manifolds have significant
applications in physics, including soliton equations and Relativity theory.

As previously highlighted, Riemannian symmetric manifolds fall under the category of
homogeneous manifolds. This introduces the two last classes in the hierarchy, which we refer to
as "the population": homogeneous and locally homogeneous Riemannian manifolds. Studying
the population allows us to draw conclusions about the entire "society" of homogeneous
manifolds. Furthermore, we can investigate a particular homogeneous manifold, showcasing
the main strength of the Tricerri-Vanhecke research program [TV83], as it provides tools to
differentiate homogeneous manifolds solely by examining their transitive actions.

A chronological overview of the Ambrose-Singer Theorem is provided in this section (see
Fig. 1.1). It is a fundamental tool to connect geometry, algebra and analysis. In particular, we
explore deeper into the philosophy of Ambrose-Singer’s Theorem and the connection between
these three fields.

As we mentioned above, symmetric spaces are a particular case of homogeneous manifolds
with the Cartan decomposition. In this case, the canonical connection coincides with the
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Fig. 1.1 Hierarchy of Riemannian transitive actions

Levi-Civita connection in the Riemannian case. In 1926, Élie Cartan characterized Riemannian
symmetric spaces.

Theorem 1.3.1 ([Car29]). Let (M,g) be a connected and simply-connected complete Rieman-
nian manifold. Then, M is symmetric if and only if ∇R = 0, where R is the curvature tensor of
the Levi-Civita connection ∇.

This theorem provides the following mathematical tools: every symmetric space, whose
definition is purely geometric, has a decomposition in terms of Lie algebras called the Cartan
decomposition. Furthermore, the covariant derivative of the Levi-Civita connection makes the
curvature of this connection parallel.

Following the philosophy of these theorems, the key ideas are shown in the global re-
sults where the theorem assumes conditions such as completeness and simply connectedness.
However, when we drop these conditions, these theorems remain true at the price that the
differentiable manifolds are no longer homogeneous but locally homogeneous. In the case of
Cartan’s Theorem they would become locally symmetric.

Theorem 1.3.2 ([Car29]). Let (M,g) be a Riemannian manifold. Then, M is locally symmetric
if and only if ∇R = 0, where R is the curvature tensor of the Levi-Civita connection ∇.

To continue this story, we must look back to 1958. In that year, Ambrose and Singer proved
that for complete, connected and simply connected Riemannian homogeneous spaces there was
a theorem analogous to Cartan’s Theorem.

Theorem 1.3.3 ([AS58, p. 656]). Let (M,g) be a connected and simply-connected complete
Riemannian manifold. Then, the following statements are equivalent:
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1. The manifold M is Riemannian homogeneous.

2. The manifold M admits a linear connection ∇̃ satisfying:

∇̃R = 0, ∇̃S = 0, ∇̃g = 0, (1.7)

where R is the curvature tensor of the Levi-Civita connection ∇LC and S = ∇LC − ∇̃.

Note that, see [TV83, p. 14-16], Eqs. (1.7) are equivalent to:

∇̃R̃ = 0, ∇̃T̃ = 0, ∇̃g = 0, (1.8)

where R̃ and T̃ are the curvature tensor and torsion tensor of the connection ∇̃.

Definition 1.3.4. Let (M,g) be a Riemannian manifold with Levi-Civita connection ∇. A
connection ∇̃ is a Ambrose-Singer Riemannian connection (or AS-connection, for short) if it
satisfies equations (1.7) (or equivalently, (1.8)). Moreover, under these conditions the difference
tensor S = ∇LC − ∇̃ is called the Riemannian homogeneous structure and the manifold the
Ambrose-Singer Riemannian manifold.

Riemannian symmetric spaces are reductive homogeneous spaces G/H with G a group
of isometries. Moreover, the Cartan decomposition satisfies g = h+m and (1.4). From
Thm. 1.2.15, the canonical connection (or AS-connection) for this reductive decomposition is
torsion-free and metric, then it is the Levi-Civita connection. It follows that for Riemannian
symmetric spaces with the Cartan decomposition, then the homogeneous structure is S = 0.

1.3.1 Locally homogeneous Riemannian manifolds

Based on this philosophy, it is necessary to provide an algebraic characterization of locally
homogeneous Riemannian manifolds. We take it step by step. In 1960, the following was
published:

Theorem 1.3.5 ([Sin60, p. 692]). If M is a complete, simply connected Riemannian manifold
which is infinitesimally homogeneous, then M is a Riemannian homogeneous manifold.

An infinitesimally homogeneous manifold is a Riemannian manifold whose covariant
derivatives of the curvature tensor of the Levi-Civita connection, up to a certain order, are the
same at each point. This would be known as the Second Singer’s Theorem, but it is not true.
If it would be correct, then every locally homogeneous manifold would be locally isometric to
a globally homogeneous manifold. Thirty years later, Kowalski found a counter example to the
Second Singer’s Theorem, see [Kow90]. In 1992, Tricerri proved:
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Theorem 1.3.6 ([Tri92, p. 413, Thm. 2.1]). A Riemannian manifold (M,g) is locally homoge-
neous if and only if there exists a linear connection ∇̃ satisfying:

∇̃R = 0, ∇̃S = 0, ∇̃g = 0,

where R is the curvature tensor of the Levi-Civita connection ∇LC and S = ∇LC − ∇̃.

In [Tri92], there is an example of a locally homogeneous manifold that cannot be locally
isometric to any homogeneous manifold. Here ends the brief story concerning the beginning of
the study of transitive actions on Riemannian manifolds. And here begins an ambitious program
developed by Tricerri and Vanhecke ([TV83], 1983) that provides interesting and powerful
geometric results taking advantage of the interplay between partial differential equations,
Algebra and Geometry. For a recent reference giving a panoramic view of most of these
geometric results, the reader can go to [CC19].

Definition 1.3.7. Let (M1,g1, ∇̃1) and (M2,g2, ∇̃2) be two Ambrose-Singer manifolds with its
respective S1 and S2 homogeneous structures. We say that they are Ambrose-Singer isomorphic
if there exists an isometry f : M1 −→ M2 such that, f∗S1 = S2.

Note that f is an isometry, which means it is affine with respect to the Levi-Civita connection
of both manifolds. Consequently, f is an affine map between AS-connections.

It is pertinent to note that manifolds may have different representations as quotients,
that is, there are different Lie groups acting transitively on the same manifold. Are these
AS-isomorphisms able to differentiate between actions? Yes, we show that quality of
AS-connections with two examples.

• The real hyperbolic space RH(n) has more than one representation as a quotient G/H.
For example, the symmetric representation of RH(n) is SO(n,1)/SO(n), with Cartan
decomposition, so(n,1) = so(n)+m. Thus, the canonical connection is the Levi-Civita
connection. Nevertheless, the Lie group representation of RH(n) is AN, where A and
N are, respectively, the abelian and nilpotent Lie groups of the Iwasawa decomposition
of SO(n,1), (see [TV83, p. 55] and [CGS09, Sec. 3.1]) with a canonical connection of
vectorial type given by ∇̃ = ∇+S where ∇ is the Levi-Civita connection and S is the
homogeneous structure given by,

SXY = g(X ,Y )ξ −g(Y,ξ )X

where ξ is the unit killing vector field generated by the abelian part of AN (see [CGS09]).
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• From [MS43], all the representations of Sn as quotient G/H are the following,

Sn = SO(n+1)/SO(n), S2n+1 = U(n+1)/U(n),

S2n+1 = SU(n+1)/SU(n)

S4n−1 = Sp(n)/Sp(n−1), S4n−1 = Sp(n+1)Sp(1)/Sp(n)Sp(1),

S4n−1 = Sp(n)U(1)/Sp(n−1)U(1)

S6 = G2/SU(3), S7 = Spin(7)/SU(3), S15 = Spin(9)/Spin(7),

(1.9)

and every of these representations defines a different (non-isomorphic) canonical connec-
tion, see [AHL23].

In light of these examples, we note Sn = SO(n+1)/SO(n) and RH(n) = SO(n,1)/SO(n)
have the same expression S = 0 homogeneous structure at every point, but they are not even
locally isometric. Therefore, it is necessary to develop a new tool to differentiate locally
isometric Riemannian manifolds with the same homogeneous structure.

Let (M,g, ∇̃) be an Ambrose-Singer Riemannian manifold and p be a point in M. Let
V = TpM be the tangent space in a fixed point p ∈ M, and consider

R̃ : V ∧V −→ End(V ), T̃ : V −→ End(V ), (1.10)

the curvature and torsion of ∇̃ on p. Then, the following equations are satisfied

T̃XY + T̃Y X = 0,

R̃XY Z + R̃Y X Z = 0,

R̃XY · T̃ = R̃XY · R̃ = 0,

S
XY Z

R̃XY Z + T̃T̃XY Z = 0,

S
XY Z

R̃T̃XY Z = 0,

R̃XY ·g = 0

(1.11)

where S
XY Z

is the cyclic sum, and R̃XY acts in a natural way in the tensor algebra of V as a

derivation. This algebraic structure (TpM, R̃, T̃ ,gp) is called a Riemannian infinitesimal model.
In general, a triple (V, R̃, T̃ ,g0) is called a Riemannian infinitesimal model if V is a finite
dimensional vector space with a metric tensor element g0, and R̃, T̃ are two tensor elements
defined by (1.10) and satisfy (1.11). Conversely,

Theorem 1.3.8 ([LT93], Thm. 4.1). For every Riemannian infinitesimal model (V, R̃, T̃ ,g0)

there exists an Ambrose-Singer Riemannian manifold (M,g, ∇̃) such that, for a point p ∈ M,
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the metric tensor g at p is g0, and the curvature and torsion of ∇̃ at p are R̃ and T̃ , respectively.
In particular, (M,g) is locally homogeneous.

In addition, we say that two infinitesimal models (V, R̃, T̃ ,g) and (V ′, R̃′, T̃ ′,g′) are isomor-
phic if there exists a linear isomorphism f : V −→V ′ such that

f R̃ = R̃′, f T̃ = T̃ ′, f g = g′.

Obviously, two infinitesimal models associated with different points in an AS-manifold are
isomorphic. Moreover, if two different AS-manifolds are AS-isomorphic, then its respective
infinitesimal models are isomorphic.

From every Riemannian infinitesimal model (V, R̃, T̃ ,g0), we can construct a transitive Lie
algebra using the so-called Riemannian Nomizu construction, see [Nom54, p. 62]. Let

g0 =V ⊕h0, (1.12)

where h0 = {A ∈ so(V ) : A · R̃ = 0, A · T̃ = 0, A ·K = 0}, equipped with the Lie bracket

[A,B] = AB−BA, A,B ∈ h0,

[A,X ] = AX , A ∈ h0, X ∈V,

[X ,Y ] =−T̃XY + R̃XY , X , Y ∈V.

Alternatively, we can also consider the so-called transvection algebra, see [Kow90]. Let

g′0 =V ⊕hol (1.13)

where hol is the Lie algebra of endomorphisms generated by R̃XY with X , Y ∈ V , equipped
with brackets as above. In particular, this Lie algebra coincides with the holonomy algebra of
the connection ∇̃.

Summarizing, if M is not simply-connected or complete, the existence of ∇̃ is still extremely
useful, as it characterizes locally homogeneous manifolds, a kind of spaces that are more than
a mere local version of global spaces.

Example 1.3.9. We consider the Lie algebra representation of spin(n+2) given by

spin(n+2) =


 0 v a
−vt A wt

−a −w 0

 :
A ∈ spin(n);
v, w ∈ Rn;

a ∈ R

 .



30 Preliminaries

associated with this representation of Lie algebras, we can construct the decomposition,

spin(n+2) = spin(n)+m,

where

h= spin(n) =


0 0 0

0 A 0
0 0 0

 : A ∈ spin(n)

 , m=


 0 vt a
−v 0 w
−a −wt 0

 :
v, w ∈ Rn;

a ∈ R

 .

If we include the closed Lie subgroup SO(n) = {diag(0,A,0) : A ∈ SO(n)} ⊂ SO(n+2), then
we can consider the homogeneous manifold M = SO(n+2)/SO(n) with reductive decomposi-
tion given above, this is a consequence of [h,m]⊂m and SO(n) is connected. Moreover, if we
lift these Lie groups to their universal covers, then we find a natural way to include Spin(n) as
a closed Lie subgroup of Spin(n+2). And, analogously,

M = Spin(n+2)/Spin(n)

with dimension equal to 2n+1 and reductive decomposition given above. The next step is to
construct the invariant tensors on the manifold and to construct the homogeneous structure.
First, we should notice that there are three invariant h-submodules of m whose expressions are
given by,

m1 =

X(v) =

 0 vt 0
−v 0 0
0 0 0

 : v ∈ Rn

 , m2 =

Y (w) =

0 0 0
0 0 w
0 −wt 0

 : w ∈ Rn

 ,

and

n2 = spanR(N2), N2 =

 0 0 1
0 0 0
−1 0 0

 .

Since [h,n2] = 0, there is an invariant vector field ξ on M generated by N2. We define the 1-form
η(·) = g(ξ ,·)√

g(ξ ,ξ )
. Moreover, we define φ : m−→m such that φ(Z) = [N2,Z]. In particular,

φ(N2) = 0, φ(X(v)) = Y (v), φ(Y (w)) =−X(w).
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Therefore, [h,φ ] = 0, which means that there exists a left invariant (1,1)-tensor field φ such
that φ(ξ ) = 0 and φ 2 = −Id. Indeed, these two tensors η and φ define an invariant almost
contact structure on M. Finally, we construct a left-invariant Riemannian metric g. We take a
metric tensor in m such that the basis {N2,X(ei),Y (ei); i = 1, ..,n} is an orthogonal basis. In
particular, we define g(B,C) = −1

2 tr(BC), for B, C ∈ m1 +m2 and g(N2,N2) = λ for certain
λ > 0.

As [A,X(v)] = X(Av) and [A,Y (w)] = Y (Aw) for every A ∈ h and v, w ∈ Rn, therefore,
we have [h,g] = 0 and we can define a left-invariant Riemannian metric g on M. Indeed,
(M,g,φ ,ξ ,η) is a Spin(n+2)-invariant almost contact metric structure, see Sec. 3.1.

Now, we compute the torsion and curvature of the AS-connection. For that, we compute
the Lie brackets of the elements in m:

[X(v1),X(v2)] = diag(0,−v1vt
2 + v2vt

1,0) ∈ h,

[Y (w1),Y (w2)] = diag(0,−w1wt
2 +w2wt

1,0) ∈ h,

[N2,X(v)] = φ(X(v)), [N2,Y (w)] = φ(Y (w)),

[X(v),Y (w)] = g(X(v),X(w))N2 =−g(X(v),φ(Y (w)))N2.

Therefore, the torsion of the canonical connection is given by

T̃BC =−[B,C]m = g(B,φC)ξ −η(B)φC+η(C)φB

and
T̃BCD = g(−[B,C]m,D) = g(B,φC)η(D)+g(C,φD)η(B)+g(D,φB)η(C)

To get the homogeneous structure tensor we use

2g(SBC,D) = g([B,C]m,D)−g([C,D]m,B)+g([D,B]m,C)

(see [CGS06, p. 601] for more details of this formula). Then,

2g(SBC,D) =−g(B,φC)η(D)−g(C,φD)η(B)−g(D,φB)η(C)

+g(C,φD)η(B)+g(D,φB)η(C)+g(B,φC)η(D)

−g(D,φB)η(C)−g(B,φC)η(D)−g(C,φD)η(B)

=−g(B,φC)η(D)−g(C,φD)η(B)−g(D,φB)η(C)

Therefore,
2SBCD =−g(B,φC)η(D)−g(C,φD)η(B)−g(D,φB)η(C),
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or equivalently,
2SBC =−g(B,φC)N2 +η(B)φC−η(C)φB.

We study the sectional curvature of the Levi-Civita connection of (M,g). Since

RBC = R̃BC +[SC,SB]−ST̃BC,

we have, for unit vector fields,

KBC = K̃BC +g([SC,SB]B,C)−g
(
ST̃BCB,C

)
,

where K and K̃ are the sectional curvature of ∇ and ∇̃, respectively. As,

g
(
R̃X(v1)X(v2)X(v1),X(v2)

)
= g
([
[X(v1),X(v2)],X(v1)

]
,X(v2)

)
= g
(
X(v1),X(v1)

)
g
(
X(v2),X(v2)

)
−g
(
X(v1),X(v2)

)2

g
(
R̃Y (v1)Y (v2)Y (v1),Y (v2)

)
= g
([
[Y (v1),Y (v2)],Y (v1)

]
,Y (v2)

)
= g
(
Y (v1),Y (v1)

)
g
(
Y (v2),Y (v2)

)
−g
(
Y (v1),Y (v2)

)2

then, the sectional curvature K̃ of ∇̃ is

K̃
(
X(v1),X(v2)

)
= 1, K̃

(
Y (w1),Y (w2)

)
= 1,

K̃
(
X(v1),Y (w2)

)
= 0, K̃(N2,X) = 0.

(1.14)

Because S is totally skew-symmetric and T̃BC =−2SBC,

g([SC,SB]B,C) = g(SCSBB,C)−g(SBSCB,C) = g(SCB,SBC) =−g(SBC,SBC),

and
−g(ST̃BCB,C) = g(SBT̃BC,C) =−g(T̃BC,SBC) = 2g(SBC,SBC).

Therefore, for unit vector fields,

KBC = K̃BC +g(SBC,SBC), (1.15)

and
g(SBC,SBC) =

1
4
(
λg(B,φC)2 +η(B)2g(φC,φC)

+η(C)2g(φB,φB)−η(B)η(C)g(φB,φC)
)
.
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This last equation, evaluated at unit vectors of the basis m, reads

g
(
SX(v1)X(v2),SX(v1)X(v2)

)
= 0, g

(
SY (w1)Y (w2),SY (w1)Y (w2)

)
= 0,

g
(
SX(v1)Y (w2),SX(v1)Y (w2)

)
=

λ

4
, g(SN2X ,SN2X) =

λ

4
.

(1.16)

For λ = 4 and unit vectors, we combine (1.15), (1.14) and (1.16). Then, we conclude that the
sectional curvature K(X ,Y ) of the Levi-Civita connection is constant and equal to 1. Indeed, in
this case, M = S2n+1.

Specifically, when n = 7, we have M = S15 = Spin(9)/Spin(7). This setting allows us to
compare our constructed description, wherein the isotropy representation has three irreducible
submodules m1, m2, and n2, with the description presented in [DKL22, pp. 452-454]. In the
latter, Spin(7) acts effectively on two irreducible submodules: one isomorphic to O and the
other to Im(O). Although these two homogeneous descriptions of S15 are not isomorphic
as AS-manifolds, they are isometric. Moreover, both descriptions share the same quotient
representation, S15 = Spin(9)/Spin(7).

Remark 1.3.10. Furthermore, these examples model the connected, complete and simply-
connected homogeneous Sasakian manifolds with homogeneous structures of type C6 ⊕CS5

(see Thm. A.2 and Thm. A.3).

For a deeper discussion on how to compute the homogeneous structure see [TV83] or [CC19,
Ch. 2]. Here, we refer to some papers where the authors studied homogeneous structures.

• The three different homogeneous structures of compact Lie groups, see [CC19, p. 56-58].

• The Heisenberg group, see [TV83].

• The standard three sphere, see [CC19, p. 54-55].

• The Berger 3-sphere, see [GO05].

• The spheres, in general, see [AHL23].

• The real hyperbolic spaces, see [CGS09] and [CGS13].

• The complex hyperbolic spaces, see [CC22a].

1.3.2 Classifications of homogeneous structures

A first goal of [TV83] is to determine whether two homogeneous structures can be AS-
isomorphic. In fact, the classification of the (1,2)-tensor S (also known as homogeneous
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structure tensor) into O(n)-irreducible classes explicitly specifies necessary conditions. We
also denote by S the (0,3)-tensor field, SXY Z = g(SXY,Z). Let S be the space of homogeneous
pseudo-Riemannian structures. It is decomposed into three classes

S1 =
{

S ∈ S : SXY Z = g(X ,Y )θ(Z)−g(X ,Z)θ(Y ), θ ∈ Γ(T ∗M)
}
,

S2 =
{

S ∈ S : S
XY Z

SXY Z = 0, c12(S) = 0
}
,

S3 =
{

S ∈ S : SXY Z +SY XZ = 0
}
,

(1.17)

where c12(S)(Z) = ∑
n
i=1 SeieiZ for any orthonormal basis {e1, . . . ,em}.

Note that, S is a finite submodule of the tensor algebra of M. Furthermore, we can equip S
with a scalar product ⟨ , ⟩ given by

⟨S,S′⟩=
n

∑
i, j,k=1

Seie jekSeie jek ,

so that, the classes are O(n)-irreducible and orthogonal submodules of S.
We deduce from this that there are eight classes of Riemannian homogeneous structures,

but we focus on only three.

({0}) Homogeneous structures with S = 0 correspond to Riemannian (locally) symmetric
manifolds with their respective Cartan decomposition. See examples above or see [KN69,
Chapter X].

(S1) This is called the class of linear type and the homogeneous structures of this type are
referred to as being of linear type. This is because the dimension of the submodule S1

grows linearly with the dimension of the manifold. There is a complete description of
this class as being locally isometric to the real hyperbolic space, see [TV83, p. 55].

(S3) Homogeneous structures of this class are called naturally reductive. They are totally
skew-symmetric and the homogeneous structure coincides (up to scalar multiplication)
with the torsion tensor of the AS-connection. For example, this type of homogeneous
structure arises naturally on the spheres and Lie groups, see [TV83] for more details
about naturally reductive manifolds.

1.3.3 Generalizations of the Ambrose-Singer theorem

Important extensions of the Ambrose-Singer Theorem have been carried out in the literature.
For example, the characterization of (local) homogeneity on pseudo-Riemannian manifolds
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was developed in [GO92] and the philosophy of Tricerri and Vanhecke was extended to pseudo-
Riemannian geometry in [GO97].

Theorem 1.3.11 ([GO92, p. 454-455, Prop. 1 and Prop. 3]). Let (M,g) be a connected and
simply-connected pseudo-Riemannian manifold. Then, the following statements are equivalent:

1. The manifold M is reductive pseudo-Riemannian homogeneous.

2. The manifold M admits a linear complete connection ∇̃ satisfying:

∇̃R = 0, ∇̃S = 0, ∇̃g = 0,

where R is the curvature tensor of the Levi-Civita connection ∇LC and S = ∇LC − ∇̃.

This situation shows a relevant difference with the original Riemannian version since the
existence of the metric connection with parallel torsion and curvature characterizes homoge-
neous spaces of reductive type only. As we know, the Lie algebra of a group acting transitively
on reductive spaces can be decomposed into two factors, invariant under the adjoint action
of the isotropy subgroup. Since every Riemannian homogeneous manifold is automatically
reductive, this particularity only shows up when dealing with metrics with signature.

The second main extension of the homogeneous structure tensors was given when additional
geometric structures are considered together with the pseudo-Riemannian metric, see the
following Theorem and its respective references.

Theorem 1.3.12 ([Kir80] or [Luj14, p. 30, Thm. 2.2.4]). Let (M,g) be a connected and simply-
connected pseudo-Riemannian manifold with a geometric structure defined by a set of tensor
fields P1, . . . ,Pk. Then, the following statements are equivalent:

1. The manifold M = G/H is reductive pseudo-Riemannian homogeneous such that G
preserves P1, . . . ,Pk.

2. The manifold M admits a linear complete connection ∇̃ satisfying:

∇̃R = 0, ∇̃S = 0, ∇̃g = 0, ∇̃Pi = 0, i = 1, . . . ,k

where R is the curvature tensor of the Levi-Civita connection ∇LC and S = ∇LC − ∇̃.

With geometric structure the authors mean a reduction of the orthogonal frame bundle, that
is, a G-structure, to a subgroup G of the orthogonal group of the corresponding signature. This
reduction is understood to be determined by the existence of a tensor or set of tensors on the
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manifold characterizing the frames of the corresponding reduction. From that point of view,
the group G is the stabilizer of a canonical tensor (or set of canonical tensors) on Rn by the
natural action of O(p,q), p+q = n. When this geometric structure is included in the picture,
the notion of homogeneous spaces requires the transitive action of an isometry group that also
conserves the geometric tensors on M. Important instances of this situation include Kähler,
quaternion-Kähler, Sasaki or G2 spaces among others.

Fig. 1.2 Hierarchy of general transitive actions

Summarising, Riemannian transitive actions have a different hierarchy than transitive
actions, in general, where being homogeneous and reductive homogeneous are not the same.
Nevertheless, the Tricerri-Vanhecke line of work [TV83] continues in the reductive program
even when the manifold is pseudo-Riemannian instead of Riemannian.



Chapter 2

The homogeneous geometries of the
complex hyperbolic space

Homogeneous manifolds provide a rich and varied class of spaces that have always deserved
the special attention of geometers. In this chapter, we focus on one of these spaces: the complex
hyperbolic space CH(n) = SU(n,1)/S(U(n)U(1)). This manifold plays an important role
in different geometric situations (among many others, the reader may look at the following
recent works on CH(n): [DDS17], [SSS20], and [Won18]) and in particular it is a model
for certain questions and classifications. For example, CH(n) is the paradigmatic space of
the homogeneous structure tensors of linear type in the Ambrose-Singer Theorem for Kähler
manifolds since a Kähler manifold with a homogeneous tensor of linear type must be locally
holomorphically isometric to the complex hyperbolic space, cf. [GMM00].

A homogeneous geometry of the complex hyperbolic space is understood as a transitive
action by isometries of a Lie group G on CH(n), that is, a homogeneous description CH(n) =
G/H, together with a canonical connection defined by a reductive decomposition associated
with it. Surprisingly, comprehensive lists of all homogeneous descriptions of homogeneous
spaces are unknown in many cases. Furthermore, even if all transitive actions on a homogeneous
space are known, questions about the geometry of the canonical connections are still unsolved
in most cases. In [CGS09], a complete description of the groups G acting transitively on
real or complex hyperbolic spaces is provided (so then RH(n) or CH(n) are G/H for certain
subgroups H). With respect to the real case, the classification is completed by the analysis
and characterization of the holonomies of all canonical connections in [CGS13]. Apart from
that, there are only a few partial results on classical homogeneous manifolds (Berger 3-
sphere [GO05], or the 3-dimensional Heisenberg group [TV83, Ch. 7]). With respect to the
complex hyperbolic space, the only well known homogeneous geometry is the symmetric
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one, where one considers the full Lie group of isometries G = SU(n,1), and the canonical
connection coincides with the Levi-Civita connection.

2.1 Pseudo-Kähler manifolds and their homogeneous structures

Let (M,g) be a pseudo-Riemannian manifold with signature (r,s) equipped with an additional
(1,1)-tensor field J satisfying J2 =−Id and

g(X ,Y ) = g(JX ,JY ) ∀X , Y ∈ T M.

In these conditions, we say that (M,g,J) is an almost pseudo-Hermitian manifold and we call
Kähler form to the 2-form,

ω(X ,Y ) = g(X ,JY ).

Finally, we say (M,g,J) is a pseudo-Kähler manifold if it satisfies,

∇ω = 0

where ∇ is the Levi-Civita connection. In a broad sense, pseudo-Kähler manifolds are the
trivial submodule of the classification in [GH80]. They decompose the space of (0,3)-covariant
tensor elements with the same symmetries of the covariant derivative of the Kähler form (∇ω)
in a fixed point p ∈ M, that is,

W =
{

α ∈V ∗⊗V ∗⊗V ∗ : α(x,y,z) =−α(x,z,y) =−α(x,Jy,Jz), ∀x, y, z ∈V
}
.

where V = TpM. This space decomposes into four U(r,s)-irreducible and orthogonal submod-
ules as,

W =W1 +W2 +W3 +W4

this decomposition gives sixteen classes of almost pseudo-Hermitian manifolds and its explicit
expressions are in [GH80, p. 41].

2.1.1 The Ambrose-Singer equations for Kähler manifolds

Let (M,g,J) be a connected, simply-connected and complete Kähler manifold of dimension 2n
and let S be a Kähler homogeneous structure tensor (see [AG88]), that is, a (1,2)-tensor field on
M such that

∇̃R = 0, ∇̃g = 0, ∇̃J = 0, ∇̃S = 0,
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where ∇̃ = ∇−S, ∇ is the Levi-Civita connection, and R its curvature tensor. We fix a point
p ∈ M. The holonomy algebra hol of ∇̃ is generated by the endomorphisms R̃XY of TpM, for
all X , Y ∈ TpM, where R̃ is the curvature of ∇̃. Note that these endomorphisms preserve the
tensors R, g and J. Furthermore, if we write m = TpM for certain p ∈ M, by the so-called
transvection construction (see [Kow80] and (1.13)), the vector space,

g̃= hol+m

can be endowed with a Lie bracket defined by

[U,V ] =UV −VU, [U,X ] =U(X), [X ,Y ] = R̃XY − T̃XY,

for U , V ∈ hol and X , Y ∈m. Since, (M,g,J) is connected, simply-connected and complete, we
get a homogeneous description of M = G̃/H, where G̃ and H are obtained by exponentiating
g̃ and hol respectively. Under these conditions, the connection ∇̃ is the canonical connection
associated with the reductive decomposition of g̃= hol+m (see [KN69, p. 192]). Recall that,
for any homogeneous space M = G/H with reductive description g = h+m, the canonical
connection at e = [H] is given by ([TV83, p.20]),

∇̃BC =−[B,C]m (2.1)

for B, C ∈m, where the vector fields of the covariant derivative are regarded as the infinitesimal
generators in M induced by elements of m. The canonical connection has the property that
every left-invariant tensor on M is parallel.

We now work from an infinitesimal point of view. Let V = TpM. We interchangeably work
with (1,2)-tensors and (0,3)-tensors given by the isomorphism,

(Sp)XY Z = g((Sp)XY,Z), X , Y, Z ∈V.

For the sake of convenience, Sp is also denoted simply as S. The condition ∇̃X g = SX ·g = 0,
is equivalent to the skew symmetry of the last two slots of the tensor above. In addition, the
condition ∇̃X J = SX ·J = 0 is equivalent to the invariance of the two slots with respect to J. We
thus define

K(V ) =
{

S ∈ ⊗3V ∗ : SXY Z =−SXZY , SXJY JZ = SXY Z

}
.

This is the space of Kähler homogeneous structure tensor elements which is the generalization
of the space of Riemannian homogeneous structures S(V ) (see Sec. 1.3.2) for Kähler manifolds.
Following the program of Tricerri and Vanhecke for this geometry, the group U(n) of unitary
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transformations of V ≃R2n acts on the space of tensors K(V ). With respect to this action, K(V )

can be decomposed in orthogonal and irreducible U(n)-submodules (see [AG88, Thm. 2.1]
and [BGO11, Thm. 3.5]) as

K(V ) =K1(V )⊕K2(V )⊕K3(V )⊕K4(V ), (2.2)

with explicit expressions in Thm. A.1.
The philosophy behind this classification relies on its invariance: if S belongs to one of these

class at p, it also belongs to the same class in the classification at any other point q ∈ M. That
is (cf. [CC19, Ch. 4]), it is equivalent to study the symmetries of the homogeneous structure S
or those of the tensor element Sp.

2.2 The complex hyperbolic space

We refer to [Gol99] for the basics on complex hyperbolic geometry that we outline now. Let ĥ
be the pseudo-Hermitian product in Cn+1 defined by

ĥ(X ,Y ) = Y1X1 + . . . +Yn−1Xn−1 +Yn+1Xn +YnXn+1.

The choice of this form (the so-called second Hermitian form) instead of the canonical one (the
first Hermitian from) is compatible with our choice of notation of the algebra su(n,1) given
below. In any case, both forms are equivalent under a Cayley transformation. From ĥ we define
the Riemannian metric ĝ(X ,Y ) = Re(ĥ(X ,Y )) and the Kähler form ω̂ = Im(ĥ(X ,Y )).

Let π = Cn+1 \ {0} −→ CPn be the canonical projection over the projective space. The
complex hyperbolic space is defined as CH(n) = π(V−), where V− = {x ∈ Cn+1 : ĥ(x,x)< 0}.
This is the Siegel domain model of CH(n). Unfortunately, this definition does not provide a
canonical Kähler structure on CH(n). For that purpose, given µ > 0, we consider the anti-de
Sitter space

H2n+1(µ) =
{

x ∈ Cn+1 : ĥ(x,x) =−µ

}
.

Obviously, H2n+1(µ) is an embedded submanifold of Cn+1 of dimension 2n+ 1 such that
π(H2n+1(µ)) = CH(n). The tangent space at z ∈ H2n+1(µ) is TzH2n+1(µ) = {X ∈ Cn+1 :
ĝ(z,X) = 0} and in particular the vector field ξz =

1√
µ

iz belongs to TzH2n+1(µ) for any z ∈
H2n+1(µ). It is easy to check that the projection π : H2n+1(µ)−→ CH(n) is an S1-principal
bundle the fibers of which are the integrable submanifolds of ξ . On the other hand, the vector
field ξ induces an orthogonal decomposition

TzH2n+1(r) = T ′
z H2n+1(r)⊕R ·ξz,
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with T ′
z H2n+1(µ) = {X ∈ Cn+1 : ĥ(X ,z) = 0}. For any µ > 0, we equip CH(n) with a Rie-

mannian metric g and Kähler form ω from ĝ and ω̂ respectively, by the pointwise isomorphism

ν = π∗ : T ′
z H2n+1(µ)−→ Tπ(z)CH(n), (2.3)

for all z ∈ H2n+1(µ).
For any µ > 0, the Levi-Civita connection associated with the metric and complex structure

induced by the projection H2n+1(µ)−→ CH(n) has constant sectional holomorphic curvature
equal to − 4

µ
.

2.2.1 The descriptions of CH(n) as a homogeneous manifold

The description of CH(n) as a symmetric space is given by the quotient

CH(n) = SU(n,1)/S(U(n)U(1)),

where SU(n,1), the full set of isometries of the complex hyperbolic space, is the set of complex
matrices of dimension n+1 preserving the form diag(Idn,−1), and determinant +1. We regard
the group S(U(n)U(1)) as the image of the monomorphism

U(n)−→ SU(n,1)

U 7→

(
U 0
0 det(U)−1

)
.

(2.4)

For the sake of simplicity of the computations in the rest of the chapter, it is much more
convenient to regard SU(n,1) as the set of complex matrices of dimension n+1, preserving
the form diag(Idn−1,

(
0 1
1 0

)
), and determinant +1. With this choice, the Lie algebras of these

groups are

su(n,1) =


 B v1 v2

−v∗2 z ib
−v∗1 ia −z

 :

z− z+ tr(B) = 0;
B ∈ u(n−1);
v1,v2 ∈ Cn−1;

z ∈ C; a, b ∈ R

 ,

k= s(u(n)+u(1)) =


 B v v
−v∗ i(a+b) i(a−b)
−v∗ i(a−b) i(a+b)

 :
2i(a+b)+ tr(B) = 0;

B ∈ u(n−1);
v ∈ Cn−1; a, b ∈ R

 .
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As usual, the star ∗ stands for the transpose of the complex conjugate. The reductive decompo-
sition

su(n,1) = s(u(n)+u(1))+m

of this symmetric description is given by the Cartan decomposition defined by the involution θ :
su(n,1)−→ su(n,1), θ(A) = diag(Idn−1,

(
0 1
1 0

)
) ·A ·diag(Idn−1,

(
0 1
1 0

)
). The (+1)-eigenspace

is k= s(u(n)+u(1)) whereas m is the (−1)-eigenspace is

m=


 0 v −v

v∗ a ib
−v∗ −ib −a

 : v ∈ Cn−1; a, b ∈ R

 . (2.5)

We now give the other homogeneous descriptions CH(n) = G/H. First, we consider the
Iwasawa decomposition G = KAN as well as its infinitesimal version

su(n,1) = k+a+n,

where k = s(u(n) + u(1)) is the compact part, a = spanR(A0) is the unique maximal R-
diagonalizable subalgebra, A0 = diag(0, . . . ,0,1,−1), and n= n1 +n2 is the nilpotent part

n1 =


 0 0 v
−v∗ 0 0

0 0 0

 : v ∈ Cn−1

 , n2 = RN2, N2 =

0 0 0
0 0 i
0 0 0

 .

With respect to these last subspaces, they are the eigenspaces n1 = gλ , n2 = g2λ , associated
with the set of roots Σ = {±λ ,±2λ}, λ (A0) = 1.

Based on the result of Witte on cocompact Lie groups [Wit90], one can determine all Lie
groups acting transitively on CH(n).

Theorem 2.2.1 ([CGS09, pp. 568-569]). The connected groups of isometries acting transitively
on CH(n) are the full isometry group SU(n,1) and the groups G=FrN, where N is the nilpotent
factor in the Iwasawa decomposition of SU(n,1) and Fr is a connected closed subgroup of
S(U(n−1)U(1))R⊂ S(U(n)U(1))R with non trivial projection to R.

In the following, we repeatedly make use of the next brackets: For X ∈ n1,[
A0,X

]
= X ,

[
A0,N2

]
= 2N2,[

A0,s(u(n−1)+u(1))
]
= 0,

[
n1,s(u(n−1)+u(1))

]
= n1,[

n2,s(u(n−1)+u(1))
]
= 0,

[
n1,n2

]
= 0,[

n2,n2
]
= 0,

[
n1,n1

]
= n2,

(2.6)
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In particular, the last bracket reads 0 0 v
−v∗ 0 0

0 0 0

 ,

 0 0 w
−w∗ 0 0

0 0 0


=

0 0 0
0 0 −v∗w+w∗v
0 0 0

=+2ω0(v,w)N2

where v, w ∈ Cn−1 and ω0 is the canonical symplectic (Kähler) form in Cn−1.

2.2.2 The Kähler structure of the homogeneous descriptions of CH(n)

Given a reductive decomposition g = h+m, we identify the reductive complement m with
Tπ(z)CH(n) for some z ∈ H2n+1(r), and find the concrete expressions of the metric g and the
Kähler form ω in m. Recall that, see (2.3), the Kähler structure on Tπ(z)CH(n) is induced by
the following isomorphism

ν = π∗ : T ′
z H2n+1(µ)−→ Tπ(z)CH(n),

where T ′
z H2n+1(µ) = {X ∈ Cn+1 : ĥ(X ,z) = 0}. Therefore, given X ∈m, we first compute

d
dt

∣∣∣∣
t=0

exp(tX) · z = X · z ∈ TzH2n+1(µ),

and then we orthogonally project to T ′
z H2n+1(µ), that is,

m−→ T ′
z H2n+1(µ)

X 7−→ X · z− ĥ(X · z,z).

We choose z =
(

0, . . . ,0,
√

µ

2 −
√

µ

2

)
∈ H2n+1(r).

For the symmetric description CH(n) = SU(n,1)/S(U(n)U(1)) and the reductive decom-
positon g= h+m given in (2.5), we easily check that

X(a,b,v) =

 0 v −v
v∗ a ib
−v∗ −ib −a

 7−→


2
√

µ

2 v

a
√

µ

2 − ib
√

µ

2

a
√

µ

2 − ib
√

µ

2

 ∈ T ′
z H2n+1(µ).
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For the other descriptions, G = FrN, H = Fr ∩ S(U(n − 1)U(1)), the elements of the
reductive complements m have always non-trivial projection to a+n and are thus of the type U 0 −2v

2v∗ a+ ic 2ib
0 0 −a+ ic

 ; v ∈ Cn−1; a, b ∈ R,

for certain U ∈ U(n−1). In this case we have

X(a,b,v) =

 U 0 −2v
2v∗ a+ ic 2ib
0 0 −a+ ic

 7−→


2
√

µ

2 v

a
√

µ

2 − ib
√

µ

2

a
√

µ

2 − ib
√

µ

2

 ∈ T ′
z H2n+1(µ).

Hence, the pull-back of the metric and the symplectic form to m under this identification
have the same expression for both cases G = SU(n,1) and G = FrN. In particular, recalling
that the metric and the symplectic form in Tπ(Z)CH(n) are the projection by ν of the standard
ones in T ′

z H2n+1(µ), this pull-back forms are

g(X1(a1,b1,v1),X2(a2,b2,v2)) = µ (a1a2 +b1b2 +2g0(v1,v2)) (2.7)

and
ω(X1(a1,b1,v1),X2(a2,b2,v2)) = µ(a1b2 −a2b1 +2ω0(v1,v2)), (2.8)

where ω0 and g0 are the canonical symplectic (Kähler) and Riemannian metric on Cn−1

respectively. Obvioulsy, the complex structure tensor J on m is characterized by ω(X1,X2) =

g(X1,JX2).

2.3 The canonical connections on CH(n)

For the symmetric homogeneous description of CH(n), the canonical connection is the Levi-
Civita connection (the homogeneous structure tensor S vanishes) so that its holonomy is the
holonomy of the Riemannian manifold.

In the following, we confine ourselves to the non-symmetric descriptions CH(n) = G/H
where G = FrN and H = Fr ∩S(U(n−1)U(1)). Since (see (2.4)) S(U(n−1)U(1))≃ U(n−1)
is compact and Fr is closed, then H is compact and, hence, reductive. Let h be the Lie algebra
of H and its reductive decomposition,

h= h0 +hss
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where h0 is abelian and hss is semi-simple.
Let fr be the Lie algebra of Fr ⊂ S(U(n− 1)U(1))A. With the restriction of the posi-

tive definite inner product k(E,E ′) = Re(tr(E∗E ′)), E, E ′ ∈ s(u(n−1)+u(1))+a to fr, we
decompose

fr = ar +h

where ar is the orthogonal subspace to h, that is k(ar,h) = 0. By Thm. 2.2.1, ar projects
to a and is of dimension 1, so that we can write it as ar = RAr with Ar = A0 + Hr and
Hr ∈ s(u(n−1)+u(1))). Since k(A0,h) = 0 and k(Ar,h) = 0, hence k(Hr,h) = 0. Therefore,
Hr = 0 or Hr /∈ h.

We claim that [ar,h] = 0. On the one hand, from the adjoint invariance of k, for every H,
H ′ ∈ h,

k([Ar,H],H ′) =−k(Ar, [H ′,H]) = 0

and then k([Ar,h],h) = 0 which means that [Ar,h] belongs to ar. On the other hand, [Ar,h] =

[A0+Hr,h] = [Hr,h]⊂ s(u(n−1)+u(1)). Hence, [Ar,h] belongs to ar ∩s(u(n−1)+u(1)) =
{0} because ar projects non-trivially to a.

Consequently, fr has the following reductive decomposition,

fr = (ar +h0)+hss.

In the expression
g= fr +n= (ar +h0)+hss +n

we define
s= a+n, sr = ar +n.

From (2.6), we have that [s,s] = n= [sr,sr].
Every canonical connection ∇̃ in G/H is equivalent to a choice of an Ad(H)-invariant

subspace m complementary to h in g. The subspace m can be regarded as a graph of an
h-equivariant map

ϕr : sr −→ h.

If we define the h-equivariant map
χr : s−→ sr

extending the identity in n and mapping A0 to Ar, we can consider

ϕ = ϕr ◦χ : s−→ h,
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and m can be regarded as the image of

·̃ ≡ χr +ϕ : a+n−→ h

X 7−→ X̃ .

Lemma 2.3.1. The Lie algebra k of the holonomy group of the canonical connection ∇̃

associated with a reductive decomposition g= h+m is

k= ϕr(n) = ϕ(n).

Proof. The holonomy algebra hol is generated by

[m,m]h.

Let H0 = ϕ(A0), Hr0 = Hr +H0. Then

Ã0 = Ar +H0 = A0 +Hr0,

Ñ2 = N2 +ϕ(N2),

by the h-equivariance of ϕ we have that H0, ϕ(N2) ∈ h0.
The subspace m is spanned by

[
Ã0, X̃

]
,
[
Ã0, Ñ2

]
,
[
Ñ2, X̃

]
and

[
X̃ , X̃ ′], for X , X ′ ∈ n1. We

study the projections to h of these brackets. During the proof, we repeatedly make use of (2.6).
With respect to the first,[

Ã0, X̃
]
=
[
A0,X

]
+
[
A0,ϕ(X)

]
+
[
Hr0,X

]
+
[
Hr0,ϕ(X)

]
= X + 0 +

[
Hr0,X

]
+ 0,

(2.9)

since [Hr,h] = 0. As Hr0 ∈ s(u(n−1)+u(1)), then [Ã0, X̃ ] lies in n1. Furthermore, Hr0 acts
on n1 as a skew-Hermitian matrix acts in Cn−1, and then adHr0 has no non-zero real roots.
Therefore, the function

f := Id+ adHr0 : n1 −→ n1

is invertible. Hence
{
[Ã0, X̃ ] : X ∈ n1

}
= n1. On the other hand, as X +ϕ(X) ∈m, for X ∈ n1,

then (X)h =−ϕ(X). Consequently,{[
Ã0, X̃

]
h

: X ∈ n1

}
= ϕ(n1).
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The second bracket yields[
Ã0, Ñ2

]
=
[
A0,N2

]
+
[
Hr0,N2

]
+
[
A0,ϕ(N2)

]
+
[
Hr0,ϕ(N2)

]
=

= 2N2 + 0 + 0 + 0,

which means that N2 =
1
2

[
Ã0, Ñ2

]
. Since N2 +ϕ(N2) ∈ m, then (N2)h = −ϕ(N2) and conse-

quently, [
Ã0,n2

]
h
= ϕ(n2).

The third bracket is[
Ñ2, X̃

]
=
[
N2,X

]
+
[
ϕ(N2),X

]
+
[
N2,ϕ(X)

]
+
[
ϕ(N2),ϕ(X)

]
= 0 +

[
ϕ(N2),X

]
+ 0 +ϕ

(
[N2,ϕ(X)]

)
=
[
ϕ(N2),X

]
.

As [ϕ(N2),X ]∈ n1, then [Ñ2, X̃ ]h =−ϕ([ϕ(N2),X ]) =−[ϕ(N2),ϕ(X)] =−ϕ([N2,ϕ(X)]) = 0.
Finally, for X , X ′ ∈ n1, the fourth bracket is

[X̃ , X̃ ′] = [X ,X ′]+ [X ,ϕ(X ′)]+ [ϕ(X),X ′]+ [ϕ(X),ϕ(X ′)]. (2.10)

The first term lies in n2, the second and third lie in n1 and the fourth lies in h. Hence, projecting
to h, we have

[X̃ , X̃ ′]h =−ϕ([X ,X ′])−ϕ([X ,ϕ(X ′)])−ϕ([ϕ(X),X ′])+ [ϕ(X),ϕ(X ′)]

=−ϕ([X ,X ′])− [ϕ(X),ϕ(X ′)].

As [n1,n1] = n2, and
[
ϕ(n1),ϕ(n1)

]
⊂
[
h,ϕ(n1)

]
= ϕ

(
[h,n1]

)
⊂ ϕ(n1), then{[

X̃ , X̃ ′
]
h

: X , X ′ ∈ n1

}
⊂ ϕ(n1)+ϕ(n2),

and the proof is complete.

From [KN69, Thm. 2.6], we now get the expressions of the curvature and the torsion forms
of all canonical connections ∇̃ in CH(n).

Corollary 2.3.2. Following the notation above, the curvature form R̃ of a canonical connection
∇̃ of a non-symmetric description CH(n) = G/H is given by,

R̃Ã0X̃ =−ϕ( f X), R̃Ã0Ñ2
=−2ϕ(N2), R̃Ñ2X̃ = 0

R̃X̃Ỹ =−2ω0(X ,Y )ϕ(N2)−
[
ϕ(X),ϕ(Y )

]
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where X, Y ∈ n1 and f := Id+ adHr0 as in the proof of Lem. 2.3.1.

Corollary 2.3.3. Following the notation above, the torsion form T̃ of a canonical connection
∇̃ of a non-symmetric description CH(n) = G/H is given by,

T̃Ã0
X̃ =− f̃ X , T̃Ã0

Ñ2 =−2Ñ2, T̃Ñ2
X̃ =

[
ϕ(N2),X

]
T̃X̃Ỹ =−2ω0(X ,Y )Ñ2 −

[
ϕ(X),Ỹ

]
−
[
X̃ ,ϕ(Y )

]
where X, Y ∈ n1 and f := Id+ adHr0 as in the proof of Lem. 2.3.1.

We also have the following result, it is important in the study of homogeneous structures of
linear type.

Corollary 2.3.4. For any canonical connection of a non-symmetric homogeneous description
CH(n) = G/H, there exist two non-vanishing and non-collinear parallel vector fields.

Proof. As R̃BCÃ0 = 0 and R̃BCÑ2 = 0, for any B, C ∈ m, then we have that ∇̃Ã0 = 0 and
∇̃Ñ2 = 0.

2.4 The homogeneous structure tensors of CH(n)

The goal of this section is to provide a technical but useful expression of the homogeneous
structure tensor S = ∇− ∇̃ for any reductive decomposition g= h+m of a (non-symmetric)
homogeneous description G/H = CH(n).

First note that the decomposition

m= ã+ ñ1 + ñ2,

given by the isomorphism ·̃ ≡ χr+ϕ : a+n−→m is orthogonal with respect to the metric (2.7).
Furthermore, if we write

B = αBÃ0 +ηBÑ2 + X̃B, B ∈m,

the symplectic structure (2.8) gives that

αJB =
1
2

ηB, ηJB =−2αB, X̃JB = JX̃B. (2.11)

For later convenience we define

B′ = αBϕ(A0)+ηBϕ(N2)+ϕ(XB),
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Br = ˜[Hr,XB],

where Hr = χr(A0)= Ã0−ϕ(A0). Note that Hr belongs to s(u(n−1)+u(1)) so that it preserves
g and ω .

Lemma 2.4.1. For any B, C, D ∈m, we have the following formulas,

[B,C]m = αB(C+Cr −ηCÑ2)−αC(B+Br −ηBÑ2)

+ [B′,C]− [C′,B]+
4
µ

ω(B,C)Ñ2
(2.12)

and

g([B,C]m,D) = αBg(C,D)−αCg(B,D)+
µ

4
ηD (αCηB −ηCαB)

+αBg(Cr,D)−αCg(Br,D)+ηDω(B,C)

+g([B′,C],D)−g([C′,B],D).

(2.13)

Proof. From (2.9) and (2.10) we get

[B,C] = αB (2ηCN2 +XC +[Hr,XC]+ [H0,XC])

−αC (2ηBN2 +XB +[Hr,XB]+ [H0,XB])

+ [X̃B, X̃C]+ [ϕ(XB),XC]+ [XB,ϕ(XC)]+ [ϕ(XB),ϕ(XC)]

+ηB[ϕ(N2),XC]−ηC[ϕ(N2),XB].

We add ±αBαCA0, ±αBηCN2, ±αCηBN2, in first and second rows and we project to m. We
get (2.12) from the expression (2.8) that now looks like

2(αBηC −ηBαC)Ñ2 + ˜[XB,XC] =
4
µ

ω(B,C)Ñ2.

Finally, (2.13) is a direct consequence.

Theorem 2.4.2. Following the notation above, the homogeneous tensor S associated with a
canonical connection ∇̃ reads

g(SBC,D) = αDg(B,C)−αCg(B,D)+αJDg(B,JC)−αJCg(B,JD)

−αJBω(X̃C, X̃D)+g([B′,C],D)+αBg(Cr,D)
(2.14)

for any B, C, D ∈m.
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Proof. To compute the homogeneous structure tensor we use

2g
(
SBC,D

)
= g
(
[B,C]m,D

)
−g
(
[C,D]m,B

)
+g
(
[D,B]m,C

)
for B, C, D ∈m, derived from (2.1) and [Bes87, p. 183]. Making use of Lem. 2.4.1 and taking
into account that for any U ∈ s(u(n−1)+u(1)) and B̂, Ĉ ∈ s, then g([U, B̂],Ĉ)+g(B̂, [U,Ĉ]) =

0, we have

2g(SBC,D) = 2αDg(B,C)−2αCg(B,D)+
µ

2
ηB(αCηD −αDηC)

+ηDω(B,C)−ηBω(C,D)+ηCω(D,B)

+2g([B′,C],D)+2αBg(Cr,D),

The proof is complete by (2.8) and (2.11).

2.5 The holonomy algebras on CH(n)

Let k be the holonomy algebra of a canonical connection on CH(n) different to su(n,1), that is
k= ϕ(n) for certain h-equivariant morphism

ϕ|n : a+n−→ h.

We decompose n≃ Cn−1 +R in two orthogonal h-modules,

n=Vk+V ′ (2.15)

where V ′ ∼= kerϕ|n and Vk = {X ∈ n : g(X ,V ′) = 0} ∼= n/kerϕ|n. Since k is a subalgebra of
s(u(n−1)+u(1)), it is of compact type and reductive. We can decompose it as

k= k0 + kss,

where k0 is abelian and kss is semi-simple. This gives a decomposition of Vk as

Vk =V0 +Vss.

We now consider the complex tensor J associated with the Kähler structure given above.

Lemma 2.5.1. The holonomy algebra k acts trivially on V0 + J(V0)+n2 +a.
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Proof. Since k⊂ s(u(n−1)+u(1)), from (2.6) we have [k,a] = 0 and [k,n2] = 0. On the other
hand, for N ∈ V0, we have [k,N] ⊂ V0 since V0 is a k-module. But ϕ([k,N]) = [k,ϕ(N)] ⊂
[k,k0] = 0. Then [k,N] ∈V ′∩V0 = {0}. Finally, k preserves J, and we get the [k,JN] = 0.

Lemma 2.5.2. The Lie algebra k0 acts trivially on Vss + J(Vss).

Proof. We consider N ∈Vss, then, [k0,N] ∈Vss ∩V ′ = {0}.

Lemma 2.5.3. There exists a k-module W isomorphic to Vss and contained in V ′.

Proof. Let kss = ks1 + . . . + ksl be the decomposition of kss in sum of simple Lie algebras and
let Vsi be the k-module associated with ksi for any i ∈ {1, . . . , l}.

First we proof that, for any i ∈ {1, . . . , l} and any non zero X ∈ Vsi , then JX /∈ Vss.
Suppose that JX ∈ Vss. The sum decomposition gives that

[
ks j ,X

]
= δi jVi, for any j, where

δi j is the Kronecker delta. Then,
[
ks j ,JX

]
= δi jJVsi and, since JX ∈ Vss, we have JX =

(JX)1 + . . . +(JX)l with JX j ∈Vj. Therefore, we must have JVsi =Vsi . Let XB and XC be two
vectors in Vsi . On the one hand, as ϕ

([
X̃ ′

B,XC
]
−
[
XB, X̃ ′

C
])

= 0 and ker
(
ϕ|Vss

)
= {0}, we have[

X̃ ′
B,XC

]
=−

[
X̃ ′

C,XB
]
. On the other, if we consider XB, XC, XD ∈Vsi ,([

(X̃B)
′,XC

]
,XD
)
= g
([
(X̃B)

′,JXC
]
,JXD

)
as JXC ∈Vsi ,

g
([
(X̃B)

′,JXC
]
,JXD

)
=−g

([
(JX̃C)

′,XB
]
,JXD

)
=+g

([
(JX̃C)

′,JXD
]
,XB
)

=−g
([
(JX̃C)

′,XD
]
,JXB

)
=+g

([
(X̃D)

′,JXC
]
,JXB

)
=+g

([
(X̃D)

′,XC
]
,XB
)
=−g

([
(X̃B)

′,XC
]
,XD
)
.

Thus, g
([
(X̃B)

′,XC
]
,XD
)
=−g

([
(X̃B)

′,XC
]
,XD
)
= 0 for every XB, XC, XD ∈Vsi and therefore[

(X̃B)
′,XC

]
= 0. As

[
ks j ,X

]
= δi jVi, ksi acts effectively on Vsi and trivially on Vs j with j ̸= i if[

X̃ ′
B,XC

]
= 0 for every XB, XC ∈Vsi then ksi is necessarily zero, and this is a contradiction with

the fact that 0 ̸= X ∈ ksi .
Now, we can say that, for any X ∈Vsi , X ̸= 0, the decomposition of k-modules V =Vss+V0+

V ′, gives JX = (JX)ss+(JX)0+(JX)V ′ with (JX)0+(JX)V ′ ̸= 0. But, as ksi ⊂ kss acts trivially
on V0 (Lem. 2.5.1), JVsi =

[
ksi,JX

]
=
[
ksi,(JX)ss

]
+
[
ksi,(JX)V ′

]
⊂Vss+V ′, we get (JX)0 = 0.

We thus define the k-module V ′
si
=
[
ksi,(JX)V ′

]
⊂ V ′, with dim(ksi) = dim(Vsi) ≥ dim(V ′

si
).

The map ψi : Vsi −→ V ′
si

, ψi(X) = (JX)V ′ is a k-module isomorphism, injective, because of
kerψi = {0}, and surjective, because of dimensions.

Finally, we consider the k-module morphism ψ : Vss −→V ′, ψ(X) = (JX)V ′ . If X = X1 +

. . . +Xl , Xi ∈ ksi , with ψ(X) = 0, then 0=
[
ksi,ψ(X)

]
=ψ([ksi,X ]) =ψ([ksi,Xi]) =ψi([ksi,Xi]).



52 The homogeneous geometries of the complex hyperbolic space

Since ψi is injective, we have [ksi,Xi] = 0 and then Xi = 0 because ksi acts effectively on Vsi , for
all i. Then ψ is injective and the image ψ(Vss) is the W of the statement.

Theorem 2.5.4. The holonomy algebras of canonical connection on CH(n), are su(n,1) and
all reductive Lie algebras of compact type

k= k0 + kss

with k0 ∼= Cr ×Rs abelian and kss semi-simple where s ≥ 0, and r ≥ 0, satisfying any of the
following two constraints of dimensions,

3r+2s+dim(kss)≤ n−1,

or, s ≥ 1 and
3r+2(s−1)+1+dim(kss)≤ n−1.

Remark 2.5.5. As we exhibit in the proof, the conditions and structure of k provided by this
theorem are determined by the role played by n= n1 +n2 with respect to the morphism ϕ of
the equality k= ϕ(n).

First, the existence of two different conditions on the dimensions shows whether ϕ(N2)∈Rs

vanishes or not. Of course, there are many choices of r,s and dimkss that satisfy both inequalities.
In these cases, the two possibilities ϕ(N2) = 0 and ϕ(N2) ̸= 0 can be considered.

On the other hand, the splitting of k0 into complex and real parts exhibits the action of
J. In particular Cr is the J-invariant part of (kerϕ)⊥ ⊂ n1 ≃ Cn−1 from the identification
k≃ (kerϕ)⊥.

Proof. Let ∇̃ be a canonical connection on CH(n) (different to the symmetric one) and R̃ its
curvature tensor. As k0 ∼= Cr ×Rs is Abelian, then an effective metric representation of k0 is at
least of real dimension 4r+2s. On the other hand, kss acts effectively on Vss +W where W is
defined in Lem. 2.5.3, and dim(Vss +W ) = 2dim(kss). We know that k acts effectively on a+n

and the action is trivial on V0 + J(V0)+n2 +a (Lem. 2.5.1). Since the actions of k0 and kss are
nonequivalent, we have

4r+2s+2dim(kss)≤ dim(a+n)−dim(V0 + J(V0)+n2 +a).

We distinguish two cases, providing the two inequalities of the statement:
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• If we have R̃Ã0 Ñ2
=−2ϕ(N2)= 0, then N2 /∈V0 and N2 /∈ JV0 (since 2JN2 =A0 /∈V0 ⊂Vk).

Then

dim(V0 + J(V0)+n2 +a) = 2dim(Cr +Rs)−dim(V0 ∩ JV0)+2 = 2(2r+ s)−2r+2

so that
6r+4s+2dim(kss)≤ 2n−2,

and we get the first inequality.

• If we have −2ϕ(N2) = R̃Ã0 Ñ2
̸= 0, as [n2,s(u(n− 1)+ u(1))] = 0 (see (2.6)) and k ⊂

s(u(n−1)+u(1)), we have that ϕ(N2)∈ k0 or N2 ∈V0, and in fact, N2 ∈Rs. Furthermore
A0 ∈ JV0. Then

dim(V0 + J(V0)+n2 +a) = 2dim(Cr +Rs)−dim(V0 ∩ JV0) = 2(2r+ s)−2r

so that
6r+4s+2dim(kss)≤ 2n,

and the second inequality is proved.

Conversely, we start from a Lie algebra k satisfying the conditions of the theorem above,
and we construct a k-equivariant map ϕ as in Lem. 2.3.1 which is in direct correspondence with
a reductive decomposition g= k+m and with a canonical connection ∇̃ of CH(n).

First, let k = k0 + kss be a reductive Lie algebra of compact type which satisfies the first
inequality of dimensions given in the theorem.

Since dimk< dimn1 we can consider a subspace Vk ⊂ n1 together with a linear k-modules
isomorphims ψ : Vk −→ k. We transfer the decomposition k= k0 + kss to Vk by ψ as V0 +Vss.
We consider V1 a minimal effective metric and complex representation of k0 ∼= Cr ×Rs and we
take W a copy of Vss. As dim(V1) = 4r+2s, and using the constraints of dimensions we define,

n1 = Cn−1 =Vk+V1 +W +Rs +Cm

for certain m ≥ 0, where L = Rs +Cm is a trivial submodule of k, and we define a complex
structure between the Rs factors of V0 and L. This decomposition of n1 admits a k-invariant
inner product compatible with the complex structure: in V0 +L = Cr+s+m; in V1, the inner
product is induced by the effective representation; in Vss, we use that it is isomorphic to a
semi-simple Lie subalgebra of a compact Lie algebra. Hence, it admits a bi-invariant real inner
product which can be extended to a Hermitian inner product in Vss +W . Therefore, k acts
effectively in Cn−1 preserving the Hermitian inner product and k arises as a Lie subalgebra of
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u(n− 1) which is isomorphic to s(u(n− 1)+u(1)). Finally, we define ϕ to be ψ on Vk and
zero on V1 +W +L+a+n2. This realises k as the holonomy algebra of a canonical connection
on CH(n) with g= k+a+n.

Second, let k = k0 + kss be a reductive Lie algebra of compact type which satisfies the
second inequality of dimensions given in the theorem and s ≥ 1.

We consider a copy Vk ⊂ n, with non-trivial projection to n2, of the k-module k given by a
linear isomorphism ψ : Vk −→ k. We decompose Vk as V0 +Vss by ψ , with V0 = n2 +V ′

0. We
consider V1 a minimal effective metric and complex representation of k0 ∼=Cr ×Rs and we take
W a copy of Vss. As dim(V1) = 4r+2s, and using the constraints of dimensions we define,

n1 = Cn−1 =V ′
0 +Vss +V1 +W +Rs +Cm,

for certain m ≥ 0, where L = Cm +Rs−1 is a trivial submodule of k and we define a complex
structure between the Rs factors of V ′

0 and L. This decomposition of n1 admits a k-invariant
inner product compatible with the complex structure: In V ′

0 +L = Cr+(s−1)+m we choose any
inner product compatible; in V1 the inner product is induced by the effective representation;
in Vss we use that it is isomorphic to a semi-simple Lie subalgebra of a compact Lie algebra,
so that, it admits a bi-invariant real inner product which can be extended to a Hermitian inner
product in Vss +W . Hence, a k arises as a Lie subalgebra of u(n−1) which is isomorphic to
s(u(n−1)+u(1)). Finally, we define ϕ to be ψ on Vk and zero on V1+L+W +a then realises
k as the holonomy algebra of a canonical connection on CH(n) with g= k+a+n.

The construction of the canonical connection associated with k is in the case Ar =A0 (ar = a,
see Sec. 2.3) the construction is analogous for Ar = A0 +Hr with Hr /∈ k. Also, note that the
Lie algebra k exponentiates to a closed (so compact) subgroup K of S(U(n−1)U(1)).

2.6 The description of homogeneous types

To complete the study of homogeneous structures in the complex hyperbolic space we charac-
terize, in terms of the holonomy algebra of the canonical connection, when a homogeneous
structure belongs to the different subspaces of the decomposition (see the expressions in
Thm. A.1)

K(V ) =K1(V )+K2(V )+K3(V )+K4(V ).

For convenience in the rest of the section, the direct sums Ki(V )+K j(V ) and Ki(V )+K j(V )+

Kk(V ) is denoted by Ki+ j(V ) and Ki+ j+k(V ) respectively.
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In Thm. 2.4.2, we found a global expression for every homogeneous structure in CH(n).
We split the expression of (2.14) in four tensors,

E1(B,C,D) = αDg(B,C)−αCg(B,D)+αJDg(B,JC)−αJCg(B,JD),

E2(B,C,D) = αJBg(X̃JC, X̃D),

E3(B,C,D) = g([B′,C],D),

E4(B,C,D) = αBg(Cr,D).

Lemma 2.6.1. The tensor element E1 belongs to K2+4(V ) with

θ2 = θ4 =
g(Ã0, ·)

g(Ã0, Ã0)
.

Lemma 2.6.2. The tensor elements E2,E3,E4 belongs to ker(c12).

Proof. We consider an orthonormal basis

B1 =

{
ẽi, ẽn =

Ã0√
µ
, ẽi+n, ẽ2n =

−2
√

µ
Ñ2 : i = 1, . . . ,n−1

}
of m such that Jẽi = ẽi+n and Jẽi+n = −ẽi. We check directly c12(E2) = 0 and c12(E4) = 0.
We proof that c12(E3) = 0. First, note that [ϕ(X), X̃ ] = [ϕ(X),X ], for any element X̃ ∈ m.
Secondly, we consider the orthogonal decomposition n=Vk+V ′ (2.15) and m= ã+Ṽk+Ṽ ′.
Therefore, we take a basis B2 = { Ã0√

µ
, ẽ j : j = 2, . . . ,2n} preserving the decomposition

above, that is, there exists k ∈ {2, . . . ,2n} such that ẽ j ∈ Ṽk for any j ∈ {2, . . . ,k} and
ẽ j ∈ Ṽ ′ for any j ∈ {k+1, . . . ,2n}. From [ϕ(A0), Ã0] = 0: if X ∈Vk, then it is satisfied that
[ϕ(X),X ] ∈ Vk ∩V ′ = {0}, and if X ∈ V ′, then ϕ(X) = 0. Therefore, each term of the sum
c12(E3) = g([(ẽ1)

′,e1],D)+∑
k
j=1 g([(ẽ j)

′,e j],D)+∑
2n
j=k+1 g([(ẽ j)

′,e j],D) vanishes.

Corollary 2.6.3. Given any non-zero Kähler homogeneous structure on CH(n) we have that

c12(S)(D) = 4nαD.

Corollary 2.6.4. The tensor element E2 is of type K2+3+4(V ) =K2(V )+K3(V )+K4(V ).

Proof. The homogeneous structure E2 =αJB (g(JC,D)− (αJCαD +ηDηJC)), the first term lies
in K2+4(V ) with θ2 =−θ4 = α and the second term lies in K3+4(V ).
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We recall the inner product in K(V ) defined as

⟨S,S′⟩=
2n

∑
i, j,k=1

Sẽiẽ j ẽkS′ẽiẽ j ẽk

where B = {ẽ1, . . . , ẽ2n} is any orthonormal basis of (V,g). With respect to this inner product
we have

ker(c12)
⊥ =

{
S ∈ K(V ) : SBCD = g(B,C)σ2(D)−g(B,D)σ2(C)

+g(B,JC)σ2(JD)−g(B,JD)σ2(JC), σ2 ∈V ∗
}
.

Lemma 2.6.5. Let S be a Kähler homogeneous structure on CH(n) = G/H and hol its
holonomy algebra. Then, S belongs to ker(c12)

⊥ if and only if hol is one dimensional with
R̃Ã0Ñ2

X̃ = JX̃ , for X̃ ∈ ñ1 and ar = a⊂ kerϕ .

Proof. Since E1 ∈ ker(c12)
⊥, from Lem. 2.6.2 we have that S ∈ ker(c12)

⊥ if and only if
E2 +E3 +E4 = 0, that is, for any B,C,D ∈m,

g([B′,C],D)+αBg(Cr,D) =−αJBg(X̃JC, X̃D). (2.16)

Suppose E3 +E4 = −E2. Then, if we take B = X̃B ∈ ñ1, we get g([ϕ(XB),C],D) = 0,
which means that ϕ(XB) = 0 and hol= ϕ(n) is only generated by ϕ(N2). If we take B = Ã0,
then g([ϕ(A0),C],D)+g([Hr,C],D) = 0 which means that ϕ(A0) =−Hr. Nevertheless, in the
beginning of Sec. 2.3 we showed, ϕ(A0) ∈ h and Hr /∈ h or Hr = 0 where h is the Lie algebra
of H. Then, necessarily Hr = 0 = ϕ(A0), indeed ar = a ⊂ kerϕ . Finally, if we take B = Ñ2

in (2.16) we have

ηBg([ϕ(N2),C],D) =−αJBg(X̃JC, X̃D)

and as ϕ(N2) acts trivially on a+n2 and ηB = 2αJB, then,

ηBg([ϕ(N2),C],D) = 2αJBg([ϕ(N2), X̃C], X̃D) =−αJBg(X̃JC, X̃D).

Therefore, X̃JC =−2[ϕ(N2), X̃C] = R̃Ã0Ñ2
X̃C.

Conversely, it is easy to check that for that holonomy algebra conditions it is satisfied
E2 +E3 +E4 = 0.
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Lemma 2.6.6. Let S = E1 +E2 +E3 +E4 be a Kähler homogeneous structure on CH(n) =
G/H and hol its holonomy algebra. Then, E3 +E4 belongs to L(V ) = {S ∈ K(V ) : SBCD =

g(X̃JC, X̃D)φ(JB), φ ∈V ∗} if and only if one of the following two cases occurs:

• The holonomy algebra hol is one dimensional such that R̃Ã0Ñ2
X̃ = λJX̃ , for X̃ ∈ ñ1 where

λ ∈ R with λ ̸= 1, ar = a and ϕ(a) = ϕ(n2) = hol.

• The holonomy algebra hol is trivial and [ϕ(A0) +Hr, X̃ ] = βJX̃, for X̃ ∈ ñ1 where
Hr = Ar −A0 and β ∈ R.

Proof. Suppose that E3 +E4 ∈ L, that is, for any B,C,D ∈m,

g([B′,C],D)+αBg(Cr,D) = φ(B)g(X̃JC, X̃D). (2.17)

If we take B = X̃B ∈ ñ1, then,

g([ϕ(XB),C],D) = g([ϕ(XB), X̃C], X̃D) = φ(X̃B)g(X̃JC, X̃D),

where for the first equality we have used that hol acts trivially in ã+ ñ2. Therefore, we have that
[ϕ(XB), X̃C] = φ(X̃B)X̃JC. Nevertheless, if we take X̃C = X̃B, then for all X̃B ∈ ñ1, φ(X̃B)X̃JB = 0.
This last equation implies φ(X̃B) = 0 and ϕ(XB) = 0, for all XB ∈ n1. Then necessarily
the holonomy algebra hol = ϕ(n) is trivial or an one dimensional subspace generated by
R̃Ã0Ñ2

= ϕ(N2).
We take B = Ñ2 and B = Ã0 in (2.17) we have

g([ϕ(N2), X̃C], X̃D) = φ(Ñ2)g(X̃JC, X̃D) (2.18)

g([ϕ(A0)+Hr, X̃C], X̃D) = φ(Ã0)g(X̃JC, X̃D), (2.19)

respectively. From these two equations, we have [ϕ(N2), X̃C] = φ(Ñ2)X̃JC and [ϕ(A0) +

Hr, X̃C] = φ(Ã0)X̃JC. Now we consider the two cases above, first, if hol is zero, then ϕ(N2) = 0
and [ϕ(A0)+Hr, X̃C] = βJX̃B with β = φ(Ã0). Secondly, if hol is non zero, then ϕ(N2) ̸=
0 and [ϕ(N2), X̃C] = λJX̃B with λ = φ(Ñ2). Moreover, in this case, necessarily Hr = 0.
As ϕ(A0),ϕ(N2) ∈ h, Hr /∈ h (beginning of Sec. 2.3) and because (2.18) and (2.19), Hr =
φ(Ã0)
φ(Ñ2)

ϕ(N2)−ϕ(A0) = 0.
Conversely, it is direct to check that taking these two cases S belongs to L.
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Remark 2.6.7. The subspace K2+4(V )∩ker(c12) has the expression,{
S ∈ K(V ) : SBCD = g(B,C)γ(D)−g(B,D)γ(C)+g(B,JC)γ(JD)

−g(B,JD)γ(JC)+2ng(JC,D)γ(JB), γ ∈V ∗
}
.

Lemma 2.6.8. Let S be a Kähler homogeneous structure on CH(n) = G/H and hol its holon-
omy algebra. Then, S belongs to K1+2+4(V ) if and only if S belongs to K2+4(V ).

Proof. Let S = E1 + E2 + E3 + E4 be a homogeneous structure in K1+2+4(V ). As E1 ∈
ker(c12)

⊥ and E2 +E3 +E4 ∈ ker(c12), then S ∈ K1+2+4(V ) if and only if E2 +E3 +E4 ∈
K1(V )+K2+4(V )∩ ker(c12). Equivalently, because of Rmk. 2.6.7, there exists γ ∈ V ∗ and
S1 ∈ K1(V ) such that,

αJBg(X̃JC, X̃D)+g([B′,C],D)+αBg(Cr,D) = g(B,C)γ(D)

−g(B,D)γ(C)+g(B,JC)γ(JD)−g(B,JD)γ(JC)

+2ng(JC,D)γ(JB)+S1
BCD.

(2.20)

As S1 ∈ K1(V ) (see the expressions in Thm. A.1), then

S1
BÑ2Ã0

=−S1
Ã0Ñ2B +S1

Ñ2Ã0B (2.21)

for all B ∈m. Now we proceed by parts. Firstly, by substituting B ∈ ñ1, C = Ñ2 and D = Ã0

in (2.20), we get
nµγ(JB)+S1

BÑ2Ã0
= 0.

Secondly, by substituting B = Ã0, C = Ñ2 and D ∈ ñ1 in (2.20), we get

µ

2
γ(JD)+S1

Ã0Ñ2D = 0.

By substituting B = Ñ2, C = Ã0 and D ∈ ñ1 in (2.20), we get

−µ

2
γ(JD)+S1

Ñ2Ã0D = 0.

Finally, taking in consideration these equations in (2.21), we obtain,

nµγ(JD) =−µγ(JD).

Therefore, γ(JD) = 0 for any D∈ n1. Now we claim that γ(Ñ2) = 0 and γ(Ã0) = 0. From (2.21),
we get that S1

Ã0Ñ2Ã0
= 0 and by substituting in (2.20), we conclude that γ(Ñ2) = 0. Arguing
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analogously, we prove that γ(Ã0) = 0. This proves that γ = 0 and E2 +E3 +E4 ∈ K1(V ). As
(E2)BCD belongs to K2+3+4(V ) and is non-zero if and only if B is co-linear with Ñ2, then it is
necessary that (E2 +E3 +E4)Ñ2CD = 0 for any B, C ∈m. We compute this and get

1
2

g(X̃JC, X̃D)+g([ϕ(N2),XC],XD) = 0.

Then, [ϕ(N2),XC] = −1
2JXC. Therefore, ϕ(N2) acts effectively in all n1 and because of

Lem. 2.5.1 and Lem. 2.5.2, hol is generated by ϕ(N2). Indeed, this implies that g([B′,C],D) =

−αJBg(X̃JC, X̃D). Therefore, αBg(Cr,D) ∈K1(V ), taking in account the identity of K1(V ) (see
the expressions in Thm. A.1). We finish that αBg(Cr,D) = 0 and E2 +E3 +E4 = 0.

Theorem 2.6.9. Let S be a Kähler homogeneous structure on CH(n) and hol its holonomy
algebra. Then,

1. S = 0 if and only if hol= s(u(n)+u(1)).

2. S belongs strictly to K2+4(V ) if and only if hol is one dimensional with R̃Ã0Ñ2
X̃ = JX̃,

for X̃ ∈ ñ1, and ar = a⊂ kerϕ .

3. S belongs strictly to K2+3+4(V ) if and only if one of the two cases occurs:

• The holonomy algebra hol is one dimensional with R̃Ã0Ñ2
X̃ = λJX̃, for X̃ ∈ ñ1

λ ̸= 1, ar = a and ϕ(a) = ϕ(n2) = hol.

• The holonomy algebra hol is trivial and [ϕ(A0)+Hr, X̃ ] = βJX̃ , for X̃ ∈ ñ1 where
Hr = Ar −A0 and β ∈ R.

4. Otherwise, S is of general type.

Proof. We proceed by parts.
We prove the first assertion. Let S be a homogeneous structure of CH(n), S is equal to

zero if and only if the Levi-Civita connection coincides with the canonical connection. As the
holonomy algebra of the Levi-Civita connection coincides with hol, then hol= s(u(n)+u(1)).

We prove the second assertion. Consider the decomposition K2+4(V ) = ker(c12)
⊥ +

K2+4(V )∩ ker(c12). As E2,E3,E4 are orthogonal to ker(c12)
⊥ and E1 ∈ ker(c12)

⊥, then
S ∈ K2+4(V ) if and only if E2 + E3 + E4 ∈ K2+4(V )∩ ker(c12). Because of Rmk. 2.6.7,
then these exists a γ ∈V ∗ such that for every B,C,D ∈m,

αJBg(X̃JC, X̃D)+g([B′,C],D)+αBg(Cr,D) =

g(B,C)γ(D)−g(B,D)γ(C)+g(B,JC)γ(JD)

−g(B,JD)γ(JC)+2ng(JC,D)γ(JB).
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If we take in this equation above C = Ñ2 and D = Ã0. Then, as [s(u(n−1)+u(1)), Ñ2] = 0 the
first row is zero. In the second row we use the identity, JÑ2 =

1
2 Ã0 and JÃ0 =−2Ñ2. Therefore,

0 = 2g(B, Ñ2)γ(Ã0)−2g(B, Ã0)γ(Ñ2)+ng(Ã0, Ã0)γ(JB).

Now, g(Ã0, Ã0) = µ and solving for γ(JB),

γ(JB) =
2g(B, Ã0)γ(Ñ2)−2g(B, Ñ2)γ(Ã0)

nµ
.

Finally, we consider the following cases: if B ∈ ñ1, then γ(JB) = 0; else, if B = Ã0 (recall that
JÃ0 =−2Ñ2), then −2γ(Ñ2) =

2
nγ(Ñ2); else, if B = Ñ2, then 1

2γ(Ã0) =
−1
2n γ(Ñ2). Consequently,

if n ̸=−1, then γ = 0 and this case is reduced to Lem. 2.6.5.
We prove the third assertion. Consider the decomposition K2+3+4(V ) = K2+4(V ) ∩

ker(c12)
⊥+K2+4(V )∩ker(c12)+K3(V ). As E1, E2 ∈ K2+3+4(V ) and E3, E4 are orthogonal

to K2+4(V )∩ker(c12)
⊥, then, S ∈ K2+3+4(V ) if and only if E3 +E4 ∈ K2+4(V )∩ker(c12)+

K3(V ). Therefore, there exists a γ ∈V ∗ and S3 ∈ K3(V ) such that for every B, C, D ∈m,

g([B′,C],D)+αBg(Cr,D) = g(B,C)γ(D)−g(B,D)γ(C)

+g(B,JC)γ(JD)−g(B,JD)γ(JC)

+2ng(JC,D)γ(JB)+S3
BCD.

(2.22)

As S3 ∈ K3(V ), then
S3

BÑ2Ã0
= S3

Ã0Ñ2B −S3
Ñ2Ã0B

for all B ∈m. Arguing analogously as in Lem. 2.6.8 we obtain,

(n−1)µγ(JD) = 0

which implies that γ(JD) = 0 for all D ∈ ñ1 (remind that if n = 1, then S = E1, indeed γ(JD)

is necessarily zero). Therefore, γ ∈ (ã+ ñ2)
∗. Equivalently to (2.22), we can consider another

γ̂ co-linear with γ and another Ŝ3 ∈ K3(V ) such that,

g([B′,C],D)+αBg(Cr,D) = γ̂(JB)g(X̃JC, X̃D)+ Ŝ3
BCD. (2.23)

The tensor element γ̂(JB)g(X̃JC, X̃D) belongs to K2+3+4(V ) with projection to K2+4(V ) is
equal to g(B,C)γ(D)−g(B,D)γ(C)+g(B,JC)γ(JD)−g(B,JD)γ(JC)+2ng(JC,D)γ(JB).
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We claim Ŝ = 0. By taking B, C, D ∈ ñ1 in (2.23) and γ̂(ñ1) = 0,

Ŝ3
BCD = g([B′,C],D),

then, g([B′,C],D) satisfies K3(V ) identity (see (2.2)), that is,

g([B′,C],D) =− 1
2

g([C′,D],B)− 1
2

g([D′,B],C)

− 1
2

g([(JC)′,JD],B)− 1
2

g([(JD)′,B],JC).

(2.24)

Firstly, we consider the decomposition n1 =Vss +V0 +V ′ as in (2.15). Because of Lem. 2.5.1
and Lem. 2.5.2, k0 acts effectively on V ′. Consequently, if XB ∈ V0 +V ′, then Ŝ3

BCD = 0.
Therefore, from now, we consider XB ∈Vss. Secondly, by substituting D = [B′,C] in (2.24) and
using the identities: [B′,B] = 0, the Jacobi identity and Ŝ3 ·g = 0. Then,∣∣∣∣[B′,C]

∣∣∣∣2 = g([C′,B], [B′,C])+g([(JC)′,B], [B′,JC]). (2.25)

We decompose, XC = (XC)ss+(XC)0+(XC)V ′ and XJC = (XJC)ss+(XJC)0+(XJC)V ′ with each
sum belonging to each sum of n1 = Vss +V0 +V ′, respectively. As k0 acts trivially on Vss

and XB ∈ Vss, then [ϕ(XC),XB] = [ϕ((XC)ss),XB] and [ϕ(XJC),XB] = [ϕ((XJC)ss),XB]. There-
fore, because of ker(ϕ|Vss) = {0}, then [ϕ((XC)ss),XB] = −[ϕ(XB),(XC)ss] = −[ϕ(XB),XC −
(XC)V ′] and [ϕ((XJC)ss),XB] =−[ϕ(XB),(XJC)− (XJC)V ′]. Taking tildes and substituting these
in (2.25),

3
∣∣∣∣[B′,C]

∣∣∣∣2 = ∣∣∣∣[B′,(X̃C)V ′]
∣∣∣∣2 + ∣∣∣∣[B′,(X̃JC)V ′]

∣∣∣∣2
≤ 2
∣∣∣∣[B′,C]

∣∣∣∣2
Therefore, Ŝ3

BCD = 0 for B, C, D ∈ ñ1. From (2.23), for any B, C ∈m, Ŝ3
BCÃ0

= 0 and Ŝ3
BCÑ2

= 0.

Finally, using (2.24), we get Ŝ3
Ã0BC

= Ŝ3
Ñ2BC = 0 and consequently Ŝ = 0. Indeed, (2.23) has de

expression,
g([B′,C],D)+αBg(Cr,D) = γ̂(JB)g(X̃JC, X̃D)

and we are in condition of Lem. 2.6.6.
Otherwise, as any homogeneous structure S has a non-zero part E1 in ker(c12)

⊥ ⊂K2+4(V )

and E2, E3, E4 ∈ ker(c12). Then, the two missing cases to study are S belongs strictly to
K1+2+4(V ) or S is of general type. Because of Lem. 2.6.8, S must be of general type.





Chapter 3

Reduction of homogeneous pseudo-Kähler
structures by one-dimensional fibers

Homogeneous manifolds are a central object for many mathematical models of physical theories
(for example, linear and degenerate homogeneous structures are related to homogeneous plane
waves, cf. [CL17]). This is especially relevant when the space is also equipped with additional
geometry such as contact or Kähler. Nevertheless, it is remarkable how little is known about the
relationship of homogeneous structures when there is a map between homogeneous manifolds.
An example of this is the reduction procedure of homogeneous structures, which was first
introduced in [CL15] and where, in particular, the authors analyzed the relationship of the
corresponding homogeneous structures of a fiber bundle equipped with a contact structure over
a pseudo-Riemannian almost-Hermitian base manifold. In this chapter we tackle the dual case,
i. e., fibrations of pseudo-Hermitian over almost contact metric manifolds.

One of the most significant cases of homogeneous structures are those of linear type, that
is, homogeneous structures belonging to the class whose dimension grows linearly with the
dimension of the manifold, see [CC19, Ch. 5]. Linear classes always provide, in the different
geometries where they have been studied, interesting results, starting from the characterization
of negative constant curvature (cf. [TV83, Thm. 5.2]) in Riemannian manifolds, to other
surprising facts in other geometries (see [BGO11] for a survey). In our work, we show that if
the Kähler manifold has a homogeneous structure of linear type, then the reduced homogeneous
structure is of linear type. Furthermore, as the homogeneous structures of almost contact metric
manifolds are related to the covariant derivative of the fundamental 2-form associated with it,
we prove that the reduced manifold by a homogeneous linear structure is of type C5 ⊕C6 ⊕C12

of Chinea-González Classification (cf. [CG90]). Besides that, if the one-dimensional Lie group
is proportional to the sum of the two vectors that define each projection to the subspaces
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K2 ⊕K4 of the linear homogeneous structure, then the manifold is Sasakian. Moreover, the
reduced manifold is cosymplectic if the sum is zero.

3.1 Almost contact metric manifolds and its homogeneous structures

Let (M,g) be a pseudo-Riemannian manifold with signature (r,s) and Levi-Civita connection
∇, equipped with a (1,1)-tensor φ , a vector field ξ ̸= 0 and the 1-form η being its dual with
respect to g such that

φ
2 =−id+η ⊗ξ , g(φ(X),φ(Y )) = g(X ,Y )− εη(X)η(Y )

where ε = g(ξ ,ξ ) = ±1. In this conditions, we say that (M,g,φ ,ξ ,η) is an almost contact
metric manifold and we call the fundamental 2-form associated with the contact structure to,

Φ(X ,Y ) = g(X ,φY ).

In an analogous way to the decomposition of [GH80] for almost Hermitian manifolds, [CG90]
gave a decomposition of the space of (0,3)-covariant tensors with the same symmetries of the
covariant derivative of the fundamental form (∇Φ) in a fixed point p ∈ M, that is,

C(V ) =
{

α ∈V ∗⊗V ∗⊗V ∗ : α(x,y,z) =−α(x,φy,φz)+η(y)α(x,ξ ,z)+η(z)α(x,y,ξ ), ∀x, y, z ∈V
}
,

where V = TpM. Recall that the group U(r,s)×1 characterizes the canonical almost contact
metric structure of R2n+1 defined by ξ0 = e2n+1 and

φ0 =

(
J0 0
0 0

)
,

J0 being the standard complex structure of R2n. That is, U(r,s)×1 is the subgroup of O(2r+
1,2s) or O(2r,2s+ 1) (depending on the value of ε) stabilizing both ξ0 and φ0. Finally, the
space C(V ) decomposes into twelve U(r,s)×1-irreducible and orthogonal submodules as,

C(V ) = C1(V )⊕ ·· · ⊕C12(V )

with explicit expressions given in [CG90] or Thm. A.3.
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Almost contact metric homogeneous structures

Let (M,g,φ ,ξ ,η) be an almost contact metric manifold. Then, S is an almost contact metric
homogeneous structure if and only if

∇̃R = 0, ∇̃S = 0, ∇̃g = 0, ∇̃Φ = 0, (3.1)

where ∇̃ = ∇−S and R is the curvature of ∇. The condition, ∇̃Φ = 0, implies that ∇̃φ = 0,
∇̃ξ = 0 and ∇̃η = 0. Moreover, the equation ∇̃φ = 0 is equivalent to ∇φ = [S,φ ], but this
condition cannot be easily implemented into the definition of the pointwise space of tensors
S(V ) (see (1.17)), V = TpM, since the Levi-Civita connection depends on the metric and
the first derivatives of the metric. However, we still can split this space of linear tensors
under the group U(r,s)×1. Then, S(V ) decomposes into two mutually orthogonal U(r,s)×1
submodules,

S(V ) = S+(V )⊕S−(V ).

with

S+(V ) =
{

S ∈ S(V ) : SXφY φZ = SXY Z

}
,

S−(V ) =
{

S ∈ S(V ) : SXφY φZ +SXY Z = η(Y )SXξ Z +η(Z)SXY ξ

}
.

Note that, S−(V ) coincides with C(V ) of the previous page. The decomposition of C(V )

into twelve mutually orthogonal and irreducible U(p,q)× 1-submodules is an orthogonal
complement to the decomposition of S+(V ) into six, that is:

S+(V ) = CS1(V )⊕ ·· · ⊕CS6(V )

S−(V ) = C1(V )⊕ ·· · ⊕C12(V )

where the classifications are given in Thm. A.2 and Thm. A.3, respectively. Cosymplectic
manifolds are an important subcase of almost contact metric manifolds. They are characterized
by the additional condition ∇φ = 0 (or ∇Φ = 0). Since S−(V ) encodes the symmetries of ∇Φ,
a homogeneous structure S belongs to S+(V ) if and only if the manifold is cosymplectic.

3.2 Reduction of a homogeneous structure

Let π : M̄ −→ M be a (left) G-principal bundle, where M̄ is a pseudo-Riemannian manifold
with metric ḡ, and the fibres are non-degenerate with respect to ḡ. Suppose that G acts on M̄ by
isometries.
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Given p̄, we consider Vp̄M̄ the vertical subspace at p̄ and Hp̄M̄ its orthogonal complement
with respect to ḡ. As G acts by isometries, the decomposition

Tp̄M̄ =Vp̄M̄⊕Hp̄M̄

is a principal G-connection. This connection ω is sometimes called a mechanical connection for
its relevant role in some problems in Geometric Mechanics (see [MO98]). Furthermore, there
is an unique pseudo-Riemannian metric g in M such that the restriction π∗ : Hp̄M̄ −→ Tπ(p̄)M
is an isometry for every p̄ ∈ M̄. Obviously, the metric g satisfies,

g(X ,Y )◦π = ḡ
(
XH ,Y H) for all X , Y ∈ X(M),

where XH and Y H denote the horizontal lift of X and Y with respect to the mechanical connec-
tion.

Let ∇̄ be the Levi-Civita connection and S̄ = ∇̄− ˜̄∇ be a pseudo-Riemannian homogeneous
structure on M̄ invariant under the action of the structure group G. Assume that there is 1-form
β taking values in End(h) such that

˜̄
∇ω = β ·ω.

Then, by [CL15, Thm. 3.7], the reduced tensor field S on M defined by

SXY = π∗
(
S̄XHY H) , X , Y ∈ X(M),

is a pseudo-Riemannian homogeneous structure of (M,g).

3.3 Fibrations of pseudo-Hermitian manifolds over almost contact
metric manifolds

Let θ be a nowhere vanishing vector field in M̄. Around any point p̄ ∈ M̄ there exists a
coordinate system (x1, . . . ,xm), m = dim(M̄), in a neighbourhood diffeomorphic to [0,1]m

such that any integral curve of θ is given by x1 = const, . . . ,xm−1 = const. The vector field is
said to be regular if the domains can be always chosen such that any orbit of θ intersects them at
most once. For regular vector fields, the orbit space M is a smooth manifold and the projection
π : M̄ −→ M a submersion (cf. [Pal57]). Furthermore, a regular vector field is said to be strictly
regular if all the orbits are diffeomorphic. If θ is a complete strictly regular vector field, the
one-parameter group G generated by θ (G = R or S1) acts freely on M̄ and π : M̄ −→ M is a
G-principal bundle. If we further assume that M̄ is equipped with a pseudo-Riemannian metric
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ḡ such that ḡ(θ ,θ) = ±1 (that is, θ is non-degenerate so that we can normalize it) and ḡ is
invariant by the group G, then the 1-form

ω(v) = ε ḡ(θ ,v), v ∈ T M̄,

where ε = sign(ḡ(θ ,θ)), is a G-principal connection form in π : M̄ −→ M, a mechanical
connection as we mentioned above.

Theorem 3.3.1. Let (M̄, ḡ, J̄) be an almost pseudo-Hermitian manifold and let θ ∈ X(M̄) be a
complete strictly regular unit vector field (ε = ḡ(θ ,θ) =±1). We consider that both ḡ and J̄
are invariant with respect to the one-parameter group G defined by θ . Then, the orbit space
(M,g,φ ,ξ ,η) is an almost contact metric manifold, with

g(X ,Y ) = ḡ
(
XH ,Y H) , φX = π∗

(
J̄XH) , ξ = π∗ (J̄θ) , (3.2)

for any X, Y ∈ T M, where XH stands for the horizontal lift with respect to the mechanical
connection, and η is the dual form of ξ , that is, η(·) = εg(·,ξ ).

Proof. As θ acts preserving the metric and the complex structure tensor, we have that the
tensors given in (3.2) are well defined. In addition, J̄θ being orthogonal to θ , it is horizontal
with respect to the mechanical connection and g(ξ ,ξ ) = ḡ(J̄θ , J̄θ) = ḡ(θ ,θ) = ε . We have to
check that

φ
2 =−Id +η ⊗ξ , g(φX ,φY ) = g(X ,Y )− εη(X)η(Y ). (3.3)

If X ∈ ξ⊥ = {Y ∈ T M : g(Y,ξ ) = 0}= kerη , then ḡ(XH , J̄θ) = 0, which means that J̄(XH)

is an horizontal vector. Then,

(φ ◦φ)(X) = φ(π∗(J̄XH)) =

= π∗((π∗(J̄XH))H) = π∗(J̄2XH) =−X .

On the other hand, φ(ξ ) = π∗(J̄(ξ H)) = π∗(J̄J̄θ) =−π∗(θ) = 0, so that both sides of

(φ ◦φ)(ξ ) =−ξ +η(ξ )ξ

vanish. The first equation of (3.3) is satisfied.
With respect to the second equation, given X ∈ T M, we denote by X ′ the orthogonal part of

X with respect to ξ . Note that, since ḡ(J̄(X ′H),θ) =−ḡ(X ′H , J̄θ) = g(X ′,ξ ) = 0, the vector



68 Reduction of homogeneous pseudo-Kähler structures by one-dim. fibers

J̄(X ′H) is horizontal. Then

g(φX ,φY ) = g(φ(X ′+η(X)ξ ),φ(Y ′+η(Y )ξ )) =

= g(φ(X ′),φ(Y ′)) = ḡ(J̄(X ′H), J̄(Y ′H))

= ḡ(X ′H ,Y ′H) = g(X ′,Y ′)

= g(X ,Y )− εη(X)η(Y ),

and the proof is complete.

Remark 3.3.2. On top of the structure on the reduced manifold provided in the previous result,
it is easy to check that the Levi-Civita connection on M associated with g is characterized by
the condition

∇XY = π∗(∇̄XHY H), X , Y ∈ X(M).

As we mentioned above, since ∇Φ belongs to S−(V ), the classification of almost con-
tact metric manifolds in categories other than cosymplectic (Sasaki, trans-Sasaki, Kenmotsu,
etc., see [CG90]) is equivalent to ∇Φ belonging to different combinations of the irreducible
subspaces C1, . . . ,C12 in which S−(V ) decomposes. These subspaces can be organized in a
coarser classification

S−(V ) = S−,1(V )+S−,0(V ),

as

S−,1(V ) = C1 ⊕C2 ⊕C3 ⊕C4 ⊕C11,

S−,0(V ) = C5 ⊕C6 ⊕C7 ⊕C8 ⊕C9 ⊕C10 ⊕C12,

characterized by

S−,1(V ) =
{

α ∈ S−(V ) : αXξ Z = 0}= {α ∈ S−(V ) : αXY Z =−αXφY φZ

}
,

S−,0(V ) =
{

α ∈ S−(V ) : αXY Z = η(Y )αXξ Z +η(Z)αXY ξ

}
.

Proposition 3.3.3. In the conditions of Thm. 3.3.1, if (M̄, ḡ, J̄) is a Kähler manifold, then the
quotient space (M,g,φ ,ξ ,η) is an almost contact manifold such that ∇Φ belongs to the class
S−,0(V ) = C5 ⊕C6 ⊕C7 ⊕C8 ⊕C9 ⊕C10 ⊕C12.
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Proof. For X , Y , Z ∈ X(M) we have

(∇X φ)Y = ∇X(φY )−φ(∇XY ) = π∗(∇̄XH (φY )H)−π∗(J̄(∇XY )H) =

= π∗(∇̄XH J(Y ′)H)−π∗(J̄(∇̄XHY H − ε ḡ(∇̄XHY H ,θ)θ)) =

= π∗
(
∇̄XH JY H − ε∇̄XH J̄(ḡ(Y H , J̄θ)J̄θ)

−J̄(∇̄XHY H)+ ε ḡ(∇̄XHY H ,θ)J̄θ)
)
.

Since ∇̄J = 0, the first and third terms of the last step above vanish and we get

(∇X φ)Y = π∗(εXH(ḡ(Y H , J̄θ))θ)+ ε ḡ(Y H , J̄θ)∇̄XH θ + ε ḡ(∇̄XH J̄Y H ,θ)J̄θ) =

= η(Y )π∗(∇̄XH θ)+ ε ḡ(∇̄XHY H ,θ)ξ

so that
g((∇X φ)Y,Z) = η(Y )ḡ(∇̄XH θ ,ZH)+η(Z)ḡ(∇̄XHY H ,θ), (3.4)

for any vector field X(M). In particular,

g((∇X φ)ξ ,Z) = η(ξ )ḡ(∇̄XH θ ,ZH)+η(Z)ḡ(∇̄XH ξ
H ,θ)

= ḡ(∇̄XH θ ,ZH)+η(Z)ḡ(∇̄XH J̄θ ,θ),

and

g((∇X φ)Y,ξ ) = η(Y )ḡ(∇̄XH θ ,ξ H)+η(ξ )ḡ(∇̄XHY H ,θ)

= η(Y )ḡ(∇̄XH θ , J̄θ)+ ḡ(∇̄XHY H ,θ)

=−η(Y )ḡ(∇̄XH J̄θ ,θ)+ ḡ(∇̄XHY H ,θ).

Then

η(Y )g((∇X φ)ξ ,Z)+η(Z)g((∇X φ)Y,ξ ) = η(Y )ḡ(∇̄XH θ ,ZH)+η(Z)ḡ(∇̄XHY H ,θ).

Comparing with (3.4) we finally get

g((∇X φ)Y,Z) = η(Y )g((∇X φ)ξ ,Z)+η(Z)g((∇X φ)Y,ξ ),

that is ∇Φ belongs to S−,0(V ).
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3.4 Reduction of Kähler homogeneous structures

Theorem 3.4.1. Let (M̄, ḡ, J̄) be a pseudo-Kähler manifold equipped with a pseudo-Kähler
homogeneous structure S̄ that is invariant under the group flow G of a complete strictly regular
unit vector field θ . Suppose that ˜̄

∇θ = β ⊗θ

where ˜̄∇ = ∇̄− S̄, and β is a 1-form on M. Then, the tensor field S on the orbit space M = M̄/G
defined by

SXY = π∗(S̄XHY H)

is a homogeneous almost contact metric structure on (M,g,φ ,ξ ,η) beloging to the class
S+(V )⊕S−,0(V ). Furthermore, the components S+ ∈ S+(V ) and S−,0 ∈ S−,0(V ) of S are

(S+)XY Z = SXφY φZ

(S−,0)XY Z = η(Y )SXξ Z +η(Z)SXY ξ ,

respectively.

Proof. Since the condition ˜̄∇θ = β ⊗θ is equivalent to ˜̄∇ω = β ·ω , we are in the conditions
explained in Sec. 3.2 so that S is a pseudo-Riemannian homogeneous structure. To show that
S is an almost contact metric homogeneous structure, we have to prove that ∇̃φ = 0, where
∇̃ = ∇−S. Let X , Y ∈ X(M) be two vector fields,

ω(˜̄∇XHY H) = XH (
ω(Y H)

)
− (˜̄∇XH ω)(Y H) =−β (XH)ω(Y H) = 0

so that, ˜̄∇XHY H is horizontal. Then ˜̄∇XHY H projects to ∇̃XY . Following the same steps in
Prop. 3.3.3, we get,

g((∇̃X φ)Y,Z) = η(Y )ḡ(˜̄∇XH θ ,ZH)+η(Z)ḡ(˜̄∇XHY H ,θ)

which implies that ∇̃φ = 0, taking again into consideration the fact that ˜̄∇XHY H is horizontal.
Now, we decompose Y = Y ′+η(Y )ξ , Z = Z′+η(Z)ξ and we get

SXY Z = S̄XHY HZH

= S̄XH(Y ′)H(Z′)H +η(Y )S̄XH J̄θ(Z′)H +η(Z)S̄XH(Y ′)H J̄θ

= S̄XH(Y ′)H(Z′)H +η(Y )S̄XH J̄θZH +η(Z)S̄XHY H J̄θ .
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Since S̄ is a pseudo-Kähler homogeneous structure

SXY Z = S̄XH J̄(Y ′)H J̄(Z′)H +η(Y )S̄XH J̄θZH +η(Z)S̄XHY H J̄θ

= SXφY φZ +η(Y )SXξ Z +η(Z)SXY ξ ,

which implies that S ∈ S+(V )⊕S−,0(V ). Finally, it is a matter of direct checking that S+ and
S−,0 in the statement satisfy S+ ∈ S+(V ) and S−,0 ∈ S−,0(V ).

Theorem 3.4.2. Let (M̄, ḡ, J̄) be a pseudo-Kähler manifold equipped with a pseudo-Kähler
homogeneous structure S̄ invariant under the flow group G of a complete strictly regular unit
vector field θ . Assume that S̄ belongs to the class K2(V̄ )+K4(V̄ ), parametrized by G-invariant
vector fields χ2 and χ4. Then, the component (S−,0) ∈ S−,0(V ) of the reduced homogeneous
almost-contact metric structure S of the almost contact metric manifold (M = M̄/G,g,φ ,ξ ,η)

belongs to C5(V )⊕C6(V )⊕C12(V ) with projections

(S−,0)(5)(X ,Y,Z) = εω(χ)(η(Y )g(X ,φZ)−η(Z)g(X ,φY ))

(S−,0)(6)(X ,Y,Z) = εη(π∗χ)(η(Z)g(X ,Y )−η(Y )g(X ,Z))

(S−,0)(12)(X ,Y,Z) = εη(X)(η(Y )g(Z,π∗χ)−η(Z)g(Y,π∗χ))

for X, Y , Z ∈V , where χ = χ2 +χ4.

Proof. In the expression

(S−,0)XY Z = η(Y )SXξ Z +η(Z)SXY ξ = η(Y )S̄XH J̄θZH +η(Z)S̄XHY H J̄θ

of the component S−,0(V ) of S, we apply that S̄ ∈ K2(V̄ )+K4(V̄ ), defined by vector fields χ2

and χ4 (see the expressions in Thm. A.1), and we have

(S−,0)XY Z = η(Y )
(
ḡ(XH , J̄θ)ḡ(ZH ,χ)− ḡ(XH ,ZH)ḡ(J̄θ ,χ)

+ ḡ(XH , J̄2
θ)ḡ(J̄ZH ,χ)− ḡ(XH , J̄ZH)ḡ(J̄2

θ ,χ)

−2ḡ(J̄2
θ ,ZH)ḡ(J̄XH , χ̂)

)
+η(Z)

(
ḡ(XH ,Y H)ḡ(J̄θ ,χ)− ḡ(XH , J̄θ)ḡ(Y H ,χ)

+ ḡ(XH , J̄Y H)ḡ(J̄2
θ ,χ)− ḡ(XH , J̄2

θ)ḡ(J̄Y H ,χ)

−2ḡ(J̄Y H , J̄θ)ḡ(J̄XH , χ̂)
)
,
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where χ = χ2 +χ4, χ̂ = χ2 −χ4. As ḡ(XH ,θ) = 0 we get

(S−,0)XY Z = η(Y )(εη(X)g(Z,π∗χ)− εη(π∗χ)g(X ,Z)+ εg(X ,φZ)ω(χ))

+η(Z)(εη(π∗χ)g(X ,Y )− εη(X)g(Y,π∗χ)− εg(X ,φY )ω(χ))

= εω(χ)(η(Y )g(X ,φZ)−η(Z)g(x,φY ))

+ εη(π∗χ)(η(Z)g(X ,Y )−η(Y )g(X ,Z))

+ εη(X)(η(Y )g(Z,π∗χ)−η(Z)g(Y,π∗φ)) .

One easily checks from expression given in the Thm. A.3, that first, second and third lines of
the last equality belong to C5(V ), C6(V ) and C12(V ) respectively.

Recall that the Ambrose-Singer condition ∇̃φ = 0 is equivalent to ∇φ = [S,φ ] = [S−,φ ].
Hence

(∇X Φ)(Y,Z) = g((∇X φ)Y,Z) = g((S−)X(φY )−φ((S−)XY ),Z)

= (S−)XφY Z +(S−)XY φZ.

If in addition S− belongs to S−,0(V ), then

(∇X Φ)(Y,Z) = η(φY )(S−)Xξ Z +ηZ(S−)XφY ξ +η(Y )(S−)Xξ φZ +ηφZ(S−)XY ξ

= η(Z)(S−)XφY ξ +η(Y )(S−)Xξ φZ. (3.5)

Proposition 3.4.3. Under the conditions of Thm. 3.4.2, the covariant derivative ∇Φ of the
fundamental form of the almost-contact metric manifold (M,g,φ ,ξ ,η) belongs to C5(V )⊕
C6(V )⊕C12(V ) with components

((∇X Φ)(5))(Y,Z) = εη(π∗χ)(η(Z)g(X ,φY )−η(Y )g(X ,φZ))

((∇X Φ)(6))(Y,Z) = εω(χ)(η(Z)g(X ,Y )−η(Y )g(X ,Z))

((∇X Φ)(12))(Y,Z) = εη(X)(η(Y )g(φZ,π∗χ)−η(Z)g(φY,π∗χ))

for X, Y , Z ∈ X(M), where χ = χ2 +χ4.
Moreover, the manifold (M,g,φ ,ξ ,η) is cosymplectic if and only if χ = 0.

Proof. From Thm. 3.4.1, the part S− of the reduced homogeneous structure S in S−(V ) belongs
to S−,0(V ) and we can apply (3.5). By means of a straightforward computation, one shows that
the components (S−)(5), (S−)(6) and (S−)(12) provide the expressions (∇X Φ)(6), (∇X Φ)(5) and
(∇X Φ)(12) in the statement, which belong to C6(V ), C5(V ) and C12(V ) respectively.
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Finally, the three components of ∇Φ vanish if and only if π∗χ = 0 and ω(χ) = 0, that is,
χ = 0.

Corollary 3.4.4. Let (M̄, ḡ, J̄) be a pseudo- Kähler manifold equipped with a pseudo-Kähler
homogeneous structure of the class K2 +K4 defined by vector fields χ2 and χ4. Suppose that
χ = χ2 + χ4 is a complete strictly regular vector field, and let G be its flow group. Then the
orbit manifold (M = M̄/G,g,φ ,ξ ,η) is Sasakian.

Proof. The vector fields χ2 and χ4 satisfy ˜̄∇χ2 =
˜̄
∇χ4 = 0 (cf. [BGO11]) so that χ = χ2 +χ4

satisfies the conditions of Thm. 3.4.1. From Prop. 3.4.3, since π∗χ = 0, we have that ∇Φ

belongs to the class C6, which is equivalent to being Sasakian ([CG90]).

Theorem 3.4.5. Let (M̄, ḡ, J̄) be a pseudo-Kähler manifold equipped with a pseudo-Kähler
homogeneous structure S̄ invariant under the flow group G of a complete strictly regular unit
vector field θ . Assume that S̄ belongs to the class K2(V̄ )+K4(V̄ ), parametrized by G-invariant
vector fields χ2 and χ4. Then, the component (S+) ∈ S+(V ) of the reduced homogeneous
almost-contact metric structure S of the almost contact metric manifold (M = M̄/G,g,φ ,ξ ,η)

belongs to CS2(V )⊕CS4(V )⊕CS6(V ), and its expression is

(S+)(X ,Y,Z) = g(X ,Y )g(Z,ρ)− εη(X)η(Y )g(Z,ρ)−g(X ,Z)g(Y,ρ)

+ εη(X)η(Z)g(Y,ρ)+g(X ,φY )g(φZ,ρ)−g(X ,φZ)g(φY,ρ)

−2g(φY,Z)g(φX , ρ̂)+2εη(X)ω(χ̂)g(φY,Z),

for X, Y , Z ∈V , where χ = χ2+χ4, χ̂ = χ2−χ4 and ρ = π∗χ−η(π∗χ)ξ , ρ̂ = π∗χ̂−η(π∗χ̂)ξ .

Proof. In the expression,

(S+)XY Z = SXφY φZ = S̄XJ̄Y ′H J̄Z′H = S̄XY ′Z′

of the component S+(V ) of S, we apply that S̄ ∈ K2(V̄ )+K4(V̄ ), defined by vector fields χ2

and χ4 (see the expressions in Thm. A.1), and we have

(S+)XY Z = ḡ(XH ,Y ′H)ḡ(Z′H ,π∗χ)− ḡ(XH ,Z′H)ḡ(Y ′H ,π∗χ)

+ ḡ(XH , J̄Y ′H)ḡ(J̄Z′H ,π∗χ)− ḡ(XH , J̄Z′H)ḡ(J̄Y ′H ,π∗χ)

−2ḡ(J̄Y ′H ,Z′H)ḡ(J̄XH ,π∗χ̂) =

= g(X ,Y ′)g(Z′,π∗χ)−g(X ,Z′)g(Y ′,π∗χ)

+g(X ,φY )g(φZ,π∗χ)−g(X ,φZ)g(φY,π∗χ)

−2g(φY,Z′)(g(φX ,π∗χ̂)− εη(X)ω(χ̂)) .
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We use that g(Z′,π∗χi) = g(Z,ρi), g(φY,π∗χi) = g(φY,ρi), g(φY,Z′) = g(φY,Z)and we
get

(S+)XY Z = g(X ,Y ′)g(Z,ρ)−g(X ,Z′)g(Y,ρ)

+g(X ,φY )g(φZ,ρ)−g(X ,φZ)g(φY,ρ)

−2g(φY,Z)g(φX , ρ̂)+2εη(X)ω(χ̂)g(φY,Z).

Finally, taking into account that g(X ,Y ′) = g(X ′,Y ), g(X ,Z′) = g(X ′,Z), X ′ = X −η(X)ξ , we
get the given expression.

Corollary 3.4.6. Let (M̄, ḡ, J̄) be a pseudo-Kähler manifold equipped with a pseudo-Kähler
homogeneous structure S̄ invariant under the flow group G of a complete strictly regular unit
vector field θ . Assume that S̄ belongs to the class K2(V̄ )+K4(V̄ ). Then the reduced homoge-
neous almost-contact metric structure S of the almost contact metric manifold (M,g,φ ,ξ ,η) is
of linear type.

Proof. This result is a consequence of Thm. 3.4.2 and Thm. 3.4.5.



Chapter 4

The Ambrose-Singer theorem for general
homogeneous manifolds

This chapter presents a generalization of the results in Sec. 1.3 to the case of homogeneous
spaces in a broad sense, that is, independently of the presence of a pseudo-Riemannian metric
on the manifold (see Thm. 4.1.2 below). More specifically, we here give a characterization
of reductive and homogeneous spaces equipped with a structure defined by a tensor (or a
set of tensors), not necessarily associated with a metric G-structure, through the existence
of a complete connection satisfying certain conditions of the Ambrose-Singer type. With
homogeneity, we understand that a Lie group acts transitively and leaves the tensors invariant.
For the local version of the results, we can drop again the topological conditions on the manifold
as well as the completeness of the connection. This will enable us to have only the so-called
notion of AS-manifold. In that case, reductivity must be defined carefully (in particular, we
follow some ideas in [Luj15]) and we show that every reductive locally homogeneous manifold
in the broad sense can be equipped with an Ambrose-Singer connection. As a particular
instance of our result, if one of the tensors is a pseudo-Riemannian metric, we recover all the
traditional Ambrose-Singer theorems in the literature.

Since all these previous characterizations live in the realm of pseudo-Riemannian geometry,
the manifold is always equipped with a background connection. Thus, considering the affine
structure of the space of all linear connections, the AS-connections can be regarded as (1,1)-
tensors called homogeneous structure tensors. From this starting point, we apply our main result
to the case where the (non-necessarily metric) manifold is also endowed with an additional
arbitrary linear connection. For this connection, the (local) transformations are assumed to be
affine. We thus generalize homogeneous structure tensors to non metric situations. This line
of thought had been followed, from an infinitesimal point of view, in [Opo98] and, recently,
[BT21], where some non-metric homogeneous spaces with connection were tackled.
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4.1 A generalization of the Ambrose-Singer Theorem

Let G be a Lie group acting transitively on a smooth manifold M. Choosing a point p0 ∈ M, we
can identify M with G/H where H ⊂ G is the isotropy subgroup of p0. Note that M need not
be pseudo-Riemannian and G is not necessarily a group of isometries. The manifold is said to
be reductive homogeneous if there is a Lie algebra decomposition g= h⊕m for certain vector
subspace m⊂ g such that Adh(m) =m, ∀h ∈ H. In this case, the subspace m can be identified
with Tp0M through the map m−→ Tp0M, X 7→ d

dt

∣∣∣
t=0

exp(tX)p0.
The action of G on M naturally lifts to the frame bundle L(M). It is well known that there

is an unique connection in L(M), that is, an unique linear connection ∇̃ such that for every
reference u at p ∈ M and for each X ∈m, the orbit exp(tX) ·u is horizontal. This is called the
canonical connection of the reductive decomposition g= h⊕m. This connection satisfies the
following important result.

Proposition 4.1.1 ([CC19, Prop. 1.4.15]). Let M = G/H be a reductive homogeneous manifold
equipped with the canonical connection ∇̃ and let K be an invariant tensor field on M with
respect to the action of G. Then ∇̃K = 0.

In this work, a n-dimensional manifold M with a geometric structure is understood as
a manifold equipped with a tensor or a set of tensors P1, . . . ,Pr, r ∈ N. This definition is
initially more relaxed than the classical notion of geometric structure in the literature (see for
example [ML04]). More precisely, a traditional approach defines a geometric structure as a
reduction of the frame bundle through a canonical model linear tensor P0 ∈ (⊗s(Rn)∗)⊗(⊗lRn)

in Rn. If L is its stabilizer by the natural action of Gl(n,R) on (⊗r(Rn)∗)⊗ (⊗lRn), a (r, l)-
tensor P on M defines a traditional geometric structure with model P0 if the map

k : L(M)−→ (⊗s(Rn)∗)⊗ (⊗lRn)

defined by

k(u)(v1, . . . ,vs, α1, . . . ,αl) = P(u(v1), . . . ,u(vs), (u∗)−1(α1), . . . ,(u∗)−1(αl)),

takes values in the Gl(n,R)-orbit of P0. In particular, the subset Q = k−1(P0) ⊂ L(M) is
a L-reduction of the frame bundle. Essential examples of this situation cover the (pseudo-
)Riemannian, Kähler, complex, symplectic or Poisson manifolds, among others. Note that some
of these examples are metric, in the sense that one of the tensors Pi is a (pseudo)-Riemannian
metric, but some other instances are non-metric.
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Theorem 4.1.2. Let M be a connected and simply-connected manifold and let P1, . . . ,Pr be
tensor fields defining a geometric structure on M. Then, the following statements are equivalent:

1. The manifold M = G/H is reductive homogeneous with G-invariant tensors P1, . . . ,Pr.

2. The manifold M admits a complete linear connection ∇̃ satisfying:

∇̃R̃ = 0, ∇̃T̃ = 0, ∇̃Pi = 0 i = 1, . . . ,r (4.1)

where R̃ and T̃ are the curvature and torsion tensors of ∇̃.

Proof. Suppose M = G/H is a reductive homogeneous manifold with G-invariant tensor fields
P1, . . . ,Pr. If ∇̃ is the canonical connection associated with the reductive decomposition, it is
well-known that the canonical connection leaves invariant R̃ and T̃ , that is ∇̃R̃ = 0, ∇̃T̃ = 0.
We also have ∇̃Pi = 0, i = 1, . . . ,r, from Prop. 4.1.1. The completeness of this connection
comes from [KN63, Ch. X, Cor. 2.5].
Conversely, let ∇̃ be a complete connection on M satisfying ∇̃R̃ = 0, ∇̃T̃ = 0, ∇̃Pi = 0, i =
1, . . . ,r. We fix a frame u0 ∈ L(M). Let (P̃(u0) −→ M, H̃ol(u0)), P̃(u0) ⊂ L(M), be the
holonomy bundle of the connection ∇̃. To simplify the notation, we denote P̃(u0) by P̃ and the
subgroup H̃ol(u0) by H̃. We will denote by h̃ the Lie algebras of H̃ and H.
We now proceed by parts.
A construction of a complete distribution on P̃:
On the one hand, if we choose {A1, . . . ,Am} a basis of h̃, the associated fundamental vector
fields {A∗

1, . . . ,A
∗
m} on P̃ are complete. On the other hand, for the canonical basis {e1, . . . en}

of Rn, the standard vector fields on L(M),

B(e1) = B1, . . . B(en) = Bn,

are complete on L(M) since ∇̃ is a complete connection (see Prop. 1.1.25). Recall that, for
η ∈ Rn, the standard vector field B(η) is the only horizontal vector field on P such that
θ(B(η)) = η , where θ is the soldering form on L(M). Note that, since ∇̃ restricts to P̃ and
each Bi is horizontal with respect to it, these standard vector fields are tangent to P̃ ⊂ L(M).
Hence {A∗

1, . . . ,A
∗
m,B1, . . . ,Bn} span a complete distribution on P̃.

The structure coefficients of the generating vectors are constant:
We have

[A∗
k ,A

∗
l ] = [Ak,Al]

∗, [A∗
k ,Bi] = B(Ak(ei)).
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We now check that [Bi,B j] has constant coefficients. We denote by ω the connection form
associated with ∇̃. The curvature and torsion of ω are denoted by Ω and Θ, respectively. Then,

Θ(Bi,B j) =−θ([Bi,B j]) ∈ Rn,

Ω(Bi,B j) =−ω([Bi,B j]) ∈ h̃.

Hence, the splitting [Bi,B j] = [Bi,B j]
h +[Bi,B j]

v with respect to ω can be written as

[Bi,B j] = B(θ([Bi,B j]))+ω([Bi,B j])
∗ =−B(Θ(Bi,B j))− (Ω(Bi,B j))

∗.

For every horizontal vector X ∈ TuP̃ (see [KN63, Ch. III, Prop. 5.2]) we have

X(Θu(Bi,B j)) = u−1((∇̃X T̃ )(Xi,X j)) = 0,

X(Ωu(Bi,B j)ek) = u−1((∇̃X R̃)(Xi,X j,Xk)) = 0,

where X , Xi, X j, Xk ∈ Tπ(u)M are the projections of X , Bi, B j, Bk, respectively. Then Θ(Bi,B j)

and Ω(Bi,B j)ek are constants and hence [Bi,B j] is a combination of {A∗
1, . . . ,A

∗
m, B1, . . . ,Bn}

with constant coefficients.
M is a homogeneous space:

Let G be the universal covering of P̃ and let ρ : G −→ P̃ be the covering map. The vector
fields A∗

k and Bi on G projecting to A∗
k and Bi are complete and the coefficients of the brackets

are constant. Hence, ([TV83, p. 10, Prop. 1.9]), given a chosen point e ∈ ρ−1(u0), we can
endow G with a structure of Lie group with neutral element e and such that the Lie algebra g of
G is generated by {(A∗

k)e,(Bi)e}. As [A∗
k ,A

∗
l ] = [Ak,Al]

∗, we can consider the Lie subalgebra
g0 ⊂ g generated by {(A∗

k)e} and let G0 ⊂ G be the associated Lie subgroup to g0.

Lemma 4.1.3. The manifold M is diffeomorphic to G/G0 and hence it is homogeneous.

Proof. The map π1 = π ◦ρ : G −→ M is a fibration of M. We take its exact homotopy sequence:

. . . // Π1(M,y) // Π0(π
−1
1 (y),b) // Π0(G,b)

0 0

where b ∈ G and π1(b) = y. We infer that Π0(π
−1
1 (y),b) = 0, that is, π

−1
1 (y) is connected.

Since π1 is continuous, we obtain that it is closed as well. Finally, by the equality π1∗(A∗
k) = 0,

we can deduce that the fibres are isomorphic to G0 and closed.
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We define

p : G/G0 → M

[b] 7−→ π1(b).

This map p is well-defined. Indeed, if we take a fixed point b0 ∈ G0 and we express it as
b0 = exp(Y1) · . . . · exp(Ys), with Y1, . . . ,Ys ∈ {π1∗(A∗

k) = 0}, then we have π(b ·b0) = π(b),
for all b ∈ G. Furthermore, p is a diffeomorphism since it is bijective and its differential is a
linear isomorphism at each point. The injectivity can be obtained from the fact that π

−1
1 (y) is

isomorphic to G0, where surjectivity is straightforward since ρ and π are both surjective.

The structure tensors are invariant and M is reductive:

Lemma 4.1.4. For any a ∈ G, the lift L̃a : L(M)−→L(M) of the map

La : M −→ M

[b] 7−→ [a ·b]

restricts to the reduction bundle L̃a : P̃ −→ P̃.

Proof. Let La be the left multiplication on G by a ∈ G. Note that La ◦π1 = π1 ◦La. Then

(La)∗ ◦π1∗(Bi)b = π1∗ ◦ (La)∗(Bi)b = π1∗(Bi)ab,

and

L̃aρ(b) = (La([b]);(La)∗ ◦π1∗(B1)b, . . . ,(La)∗ ◦π1∗(Bn)b)

= ([ab];π1∗(B1)ab, . . . ,π1∗(Bn)ab)

= ρ(ab) ∈ P̃.

Hence,
L̃a(ρ(b)) = ρ(ab).

Since P̃ is included in the reduction of L(M) defined by the tensors P1, . . . ,Pr, we have that
L̃a preserves them.
On the other hand, P̃ is a Lie group. The action of G on P̃ introduced in the previous Lem. 4.1.4
is transitive, since L̃a(ρ(b)) = ρ(ab), and also effective because it is constructed by linear
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transformation. In particular, the Lie algebra of P̃ is isomorphic to the Lie algebra of its
universal covering G, through the isomorphism (ρe)∗ in the neutral element.
Finally, we have g= g0⊕m, where m is the subspace generated by {Bi}, which clearly satisfies
[g0,m]⊂m. Since G0 is connected, we have the Ad invariance of m, and the proof of Thm. 4.1.2
is completed. ■

Remark 4.1.5. The case with no geometric structure on M (r = 0) was treated in [KN69,
Ch. X, Th. 2.8] or [Kow80]. There, the authors characterized connected and simply connected
reductive homogeneous manifolds M = G/H by the existence of a complete connection ∇̃ such
that ∇̃R̃ = 0, ∇̃T̃ = 0. Thm. 4.1.2 thus provides the generalization of this result to manifolds
endowed with additional structures (r ≥ 1).

Definition 4.1.6. Let (M,P1, . . . ,Pr) be a manifold equipped with a geometric structure
defined by a set of tensors P1, . . . ,Pr. A connection ∇̃ is called a generalized Ambrose-Singer
connection if it satisfies that:

∇̃R̃ = 0, ∇̃T̃ = 0, ∇̃Pi = 0, i = 1, . . . ,r

where R̃ and T̃ are the curvature and torsion of ∇̃.

For short, a generalized Ambrose-Singer connection is called an AS-connection, and the
manifold M, equipped with the tensors P1, . . . ,Pr, is called an AS-manifold.

We note that Thm. 4.1.2 generalizes the Ambrose-Singer Thm. 1.3.3 on Riemannian
manifolds (M,g) by setting r = 1 and P1 = g. In this case, the AS conditions (4.1), that
is, ∇̃R̃ = 0, ∇̃T̃ = 0, ∇̃g = 0, are known to be equivalent to the more classical conditions
∇̃R = 0, ∇̃S = 0, ∇̃g = 0, where S = ∇̃ − ∇LC, and R is the curvature of the Levi-Civita
connection ∇LC. We now show that this equivalence can be analysed from a broader perspective
for manifolds equipped with a fixed connection for which the transitive group action is via
affine transformations. More precisely, we have the following result.

Theorem 4.1.7. Let M be a connected and simply-connected manifold with an affine connection
∇ and let P1, . . . ,Pr be tensor fields defining a geometric structure on M. Then, the following
statements are equivalent:

1. M is a reductive homogeneous space M ≃G/H, the group G acts by affne transformations
of ∇ and P1, . . . ,Pr are G-invariant.

2. The manifold M admits a complete linear connection ∇̃ satisfying:

∇̃R = 0, ∇̃T = 0, ∇̃S = 0, ∇̃Pi = 0 i = 1, . . . ,r
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where R and T are the curvature and torsion of ∇ and S = ∇− ∇̃.

Proof. Let G ⊂ Aff(M,∇) be a group acting transitively on M and preserving P1, . . . ,Pr.
Additionally, G preserves the tensor S = ∇− ∇̃. Hence, by Thm. 4.1.2 we have that

∇̃R̃ = 0, ∇̃T̃ = 0, ∇̃S = 0, ∇̃Pi = 0, i = 1, . . . ,r

which are equivalent to

∇̃R = 0, ∇̃T = 0, ∇̃S = 0, ∇̃Pi = 0 i = 1, . . . ,r

by the following observation,

TXY − T̃XY = SXY −SY X , R̃XY = RXY +[SX ,SY ]+ST̃XY .

Conversely, by Thm. 4.1.2, we have that there exists a Lie group G preserving S, P1, . . . ,Pr.
Every transformation of G on M preserves S and is an affine transformation of ∇̃. Hence, G
preserves S+ ∇̃ = ∇ which means they are affine transformations of ∇.

Remark 4.1.8. In particular, Thm. 4.1.7 covers the case of Riemannian homogeneous manifold
when r = 1, P1 = g the metric tensor and ∇ = ∇LC is the Levi-Civita connection. In that case,
the preservation of g implies the affine nature of the transformations.

Definition 4.1.9. Let (M,P1, . . . ,Pr) be a manifold equipped with a geometric structure defined
by a set of tensors P1, . . . ,Pr together with an affine connection ∇. A homogeneous structure
is a collection (M,P1, . . . ,Pr,∇, ∇̃) such that

∇̃R = 0, ∇̃T = 0, ∇̃S = 0, ∇̃Pi = 0, i = 1, . . . ,r

where S = ∇− ∇̃, and R and T are the curvature and torsion of ∇ respectively. For short, we
call S a homogeneous structure tensor.

In particular, homogeneous structures of ∇LC are the classical Riemannian homogeneous
structures.

Recall that, in Rmk. 1.2.5 we consider one tensor K = (P1, . . . ,Pr) instead of a set of
tensors. Consequently, in following sections we adopt this notation for a set of tensors and
results are analogous.
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4.2 Reductive locally homogeneous manifolds

The conditions involved in Thm. 4.1.2 are of three different types. First, there is a group of
partial differential equations expressed as the vanishing of some covariant derivatives. Second,
the completeness of the AS-connection. And finally, a couple of topological conditions (con-
nectedness and simply-connectedness) of the manifold M. Connectedness is not an issue, since
one usually works with connected components. With respect to simply connectedness, even
though essential, it is a condition that can be implemented by working with the universal cover
of the manifold, and then projecting the structures back to the original space. The projection
will probably imply that the space is locally homogeneous only, but locally isomorphic to
the global homogeneous cover. The completeness, however entails more delicate information
since non-complete AS connections may induce locally homogeneous manifolds that are not
locally isomorphic to homogeneous spaces. In the Riemannian case, we already introduced the
classical result (see Thm. 1.3.6).

However, if one wants to move forward, the generalization to pseudo-Riemannian manifolds
with signature implies the understanding of the notion of reductivity in the local case. That
construction was recently achieved in [Luj15]. We generalize below the definition of reductive
locally homogeneous manifolds with not necessarily metric structure, and we also characterize
these manifolds through a transitive Lie pseudo-group and an AS-connection.

Let G be the Lie pseudo-group that acts transitively on (M,K) and preserves a geometric
structure defined by a tensor or a set of tensors K = (P1, . . . ,Pr). That is, (M,K) is a locally
homogeneous manifold, see Def. 1.2.6. In order to define a reductive locally homogeneous
manifold, we have to know:

• The meaning of isotropy representation related to pseudo-groups.

• The meaning of adjoint function.

We again fix a frame u0 ∈L(M) over p0 ∈ M. We define G(p0) as the set of transformations
for which p0 belongs to the domain of ϕ and G(p0, p0)⊂G(p0) the set of transformations such
that ϕ(p0) = p0. The quotient H(p0) = G(p0, p0)/∼ with respect to the relation ϕ ∼ ψ ⇐⇒
ϕ|U = ψ|U for some neighbourhood U of p0, is a Lie group (cf. [Acc21, Ch. 1]). We say that
the action of G on M is effective and closed if the map

H(p0)−→ GL(n,R)

ϕ 7−→ u−1
0 ◦ϕ∗ ◦u0

(4.2)



4.2 Reductive locally homogeneous manifolds 83

is a monomorphism and its image H(u0) is closed, respectively; in particular, H(u0) is a Lie
subgroup of GL(n,R). The morphism (4.2) will be called the isotropy representation of G on
(M,K).

Proposition 4.2.1. The action of G on M is effective if and only if for every ϕ , ψ ∈ G such that
ϕ(p0) = ψ(p0) and ϕ∗,p0 = ψ∗,p0 , we have ϕ = ψ in an open neighbourhood of p0.

Proof. It is obvious that if we have the second condition then we have an effective action.
Conversely if ϕ , ψ ∈ G are such that ϕ(p0) = ψ(p0) and ϕ∗,p0 = ψ∗,p0 , we have ψ ◦ϕ−1 ∈

H(p0), ψ ◦ ϕ−1(p0) = p0 and (ψ ◦ ϕ−1)∗,p0 = IdTp0M. Then, ψ ◦ ϕ−1 = IdM in an open
neighbourhood of p0.

We now consider

P(u0) :=
{

ϕ∗ ◦u0 : Rn −→ Tϕ(p0)M : ϕ ∈ G(p0)
}
. (4.3)

This bundle is a reduction of (L(M)−→ M,GL(n,R)) to the group H(u0).

Proposition 4.2.2. Let u0, u1 ∈L(M) be two frames on p0 and p1 ∈ M respectively, and ψ ∈ G
with ψ(p0) = p1. Then,

P(u1) = P(u0)g,

where g is the element in GL(n,R) such that ψ∗u0 = u1g−1.

Proof. We define the homomorphism σ : H(p0)−→ H(p1), ϕ 7−→ ψ ◦ϕ ◦ψ−1. For the sake
of simplicity, we also denote by σ : H(u0) −→ H(u1) the induced homomorphism by the
identification (4.2). It is a matter of checking that Rg : L(M) −→ L(M) induces a principal
bundle isomorphism between P(u0) and P(u1) with associated Lie group homomorphism
σ .

In particular, the groups H(u0) and H(u1) are always isomorphic. Because of this, we may
simply write H for any H(u0).

Given an element ϕ ∈ H(p0), we define

Adϕ : Tu0P(u0)−→ Tu0P(u0)

d
dt

∣∣∣
t=0

(ϕt)∗(u0) 7−→
d
dt

∣∣∣
t=0

(ϕ ◦ϕt ◦ϕ
−1)∗(u0)

where ϕt ∈ G, t belonging to certain interval (−ε,ε).

Definition 4.2.3. Let (M,K) be a manifold with a geometric structure. We will say that
(M,K) is reductive locally homogeneous manifold if there exists a Lie pseudo-group G acting



84 The Ambrose-Singer theorem for general homogeneous manifolds

transitively, effectively and closed on M, and we can decompose Tu0P(u0) = h+m, where h is
the Lie algebra associated with H(p0) and m is a Ad(H(p0))-invariant subspace.

The definition depends at first sight on the chosen frame u0. However, this dependence is
not real as the following result proves.

Proposition 4.2.4. Let u0, u1 ∈ L(M) be two linear frames. Then Tu1P(u1) decomposes as
h+m1 for an Ad(H(p1))-invariant subspace m1 if and only Tu0P(u0) decomposes as h+m0

for an Ad(H(p0))-invariant subspace m0.

Proof. Given the decomposition Tu0P(u0) = h+m0 is such that Ad(H(p0))ϕ(m0)⊂m0, we
write Tu1P(u1) = h+m1 with m1 = Ψ∗m0, where Ψ = Rg ◦ψ∗ and ψ ∈ G is such that ψ∗u0 =

u1g−1 and g ∈ GL(n,R). The subspace m1 is Ad(H(p1))-invariant. Indeed, for any element
X = d

dt

∣∣∣
t=0

(ϕt)∗(u0) ∈m0 and ϕ ∈ H(p0), we have that

Ψ∗(Ad(H(p0))ϕ(X)) =

=
d
dt

∣∣∣
t=0

Rg ◦ (ψ ◦ϕ ◦ϕt ◦ϕ
−1 ◦ψ

−1)∗ ◦R−1
g (Rg ◦ψ∗(u0))

=
d
dt

∣∣∣
t=0

Rg ◦ (ψ ◦ϕ ◦ϕt ◦ϕ
−1 ◦ψ

−1)∗ ◦R−1
g (u1)

=
d
dt

∣∣∣
t=0

(ψ ◦ϕ ◦ψ
−1 ◦ψ ◦ϕt ◦ψ

−1 ◦ψ ◦ϕ
−1 ◦ψ

−1)∗(u1)

= Ad(H(p1))(ψ◦ϕ◦ψ−1)

( d
dt

∣∣∣
t=0

(ψ ◦ϕt ◦ψ
−1)∗(u1)

)
= Ad(H(p1))σ(ϕ)(Ψ∗(X)).

Now we give a local version of Thm. 4.1.2 above. Furthermore, it provides a generalization
of Tricerri’s result Thm. 1.3.6.

Theorem 4.2.5. Let (M,K) be a differentiable manifold with a geometric structure K. Then
the following assertions are equivalent:

1. The manifold (M,K) is a reductive locally homogeneous space, associated with the Lie
pseudo-group G.

2. There exists a connection ∇̃ such that:

∇̃R̃ = 0, ∇̃T̃ = 0, ∇̃K = 0,

where R̃ and T̃ are the curvature and torsion of ∇̃ respectively.
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Proof. Given a Lie pseudo-group G acting transitively on (M,K) in a reductive fashion, let
(P−→M,H) be the principal bundle associate to the structure of reductive locally homogeneous
space as in (4.3), for a fixed frame u0 ∈ L(M). We define a horizontal distribution D in P by
Du = Ψ∗(m), Ψ = ψ∗, for the unique ψ ∈ G such that ψ∗(u0) = u, where Tu0P = h+m is the
reductive decomposition. The distribution D is also H-invariant, that is, given Y = Ψ∗(X) ∈ Du,
X ∈ m, we have that (Rh)∗(Y ) ∈ Du·h, for h ∈ H. Indeed, we write X = d

dt

∣∣∣
t=0

(ϕt)∗(u0) and,

by (4.2), h = u−1
0 ◦ϕ∗ ◦u0 for certain ϕ ∈ H(p0). Then

(Rh)∗(Y ) = (Rh ◦Ψ)∗(X) =
d
dt

∣∣∣
t=0

Rh ◦ψ∗ ◦ (ϕt)∗(u0)

=
d
dt

∣∣∣
t=0

ψ∗ ◦ (ϕt)∗(u0 ◦u−1
0 ◦ϕ∗ ◦u0)

=
d
dt

∣∣∣
t=0

ψ∗ ◦ (ϕt)∗ ◦ϕ∗ ◦u0

=
d
dt

∣∣∣
t=0

ψ∗ ◦ϕ∗ ◦ϕ
−1
∗ (ϕt)∗ ◦ϕ∗ ◦u0

= (ψ∗ ◦ϕ∗)∗Ad(H(p0))ϕ−1(X).

As Ad(H(p0))ϕ−1(X) ∈m by reductive condition, and ψ ◦ϕ ∈ G we get the invariance. This
means that D can be understood as a linear connection ∇̃.

We now show that
∇̃R̃ = 0, ∇̃T̃ = 0, ∇̃K = 0.

For p, q ∈ M, let γ be a path connecting them. The horizontal lift γ̃ with respect to ∇̃ from
u ∈ Pp to v ∈ Pq, can be regarded as the parallel transport TpM −→ TqM. But since v = ψ∗u, for
an element ψ ∈ G, we have that the parallel transport is exactly ψ∗. We have that ψ∗ preserves
K and the connection ∇̃ (and hence, its curvature and torsion) by construction. Therefore, K, R̃
and T̃ are invariant under parallel transport and their covariant derivatives vanish.

Conversely, given a linear connection ∇̃ such that ∇̃R̃ = 0, ∇̃T̃ = 0, ∇̃K = 0, let G be its Lie
pseudo-group of local transvections. Since ∇̃K = 0, the elements of G preserve K. Furthermore,
see [KN63, Vol. I, p. 262, Cor. 7.5], G acts transitively.

To finish the proof we only have to show the reductive condition. We consider the holonomy
reduction (P̃(u0) −→ M, H̃ol(u0)) of the frame bundle associated with ∇̃ and an element
u0 ∈ L(M). We first prove that G(p0) acts transitively on P̃(u0), being p0 = π(u0). Given
v∈ P̃(u0), there exists a horizontal curve connecting u0 with v. The projection to M of that curve
can be regarded as a parallel transport from p0 to q = π(v) that, in addition, preserves curvature
and torsion. Hence by [KN63, Vol. I, p. 261, Thm. 7.4] there exists a local transvection
ψ ∈ G(p0) from p0 to q such that ψ∗ is that parallel transport. Therefore, ϕ∗(u0) = v and
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G(p0) acts transitively on P̃(u0). By construction, P(u0) (see (4.3)) coincides with P̃(u0). In
particular, H̃ol(u0) = H(u0) which is closed and the effective condition it is satisfied because
Prop. 4.2.1.

Finally, if we consider Tu0P̃(u0) = h+m, where m is the horizontal distribution of ∇̃ at u0.
To prove that m is Ad(H(p0))-invariant, take X = d

dt

∣∣∣
t=0

(ϕt)∗(u0) ∈ m, ϕ ∈ G(p0) such that

ϕ(p0) = p0 and h = u−1
0 ◦ (ϕ−1)∗ ◦u0 ∈ H(u0). We consider,

Ad(H(p0))ϕ(X) =
d
dt

∣∣∣
t=0

ϕ∗ ◦ (ϕt)∗ ◦ϕ
−1
∗ (u0)

=
d
dt

∣∣∣
t=0

ϕ∗ ◦ (ϕt)∗ ◦u0 ◦u−1
0 ◦ϕ

−1
∗ u0

=
d
dt

∣∣∣
t=0

Rh ◦ϕ∗ ◦ (ϕt)∗(u0) = (Rh ◦ϕ∗)∗(X).

Hence, (Rh ◦ϕ∗)∗(X) belongs to the horizontal distribution, because affine transvections pre-
serve the horizontal distribution.

If we apply this last Theorem in the framework of Thm. 4.1.7 above, we get the following
result.

Corollary 4.2.6. Let (M,K) be a differentiable manifold with an affine connection ∇. Then the
following assertions are equivalent:

1. The manifold (M,K) is a reductive locally homogeneous space, associated with a Lie
pseudo-group contained in Affloc(M,∇).

2. There exists a connection ∇̃ such that:

∇̃R̃ = 0, ∇̃T̃ = 0, ∇̃S = 0, ∇̃K = 0,

or
∇̃R = 0, ∇̃T = 0, ∇̃S = 0, ∇̃K = 0,

where R,T and R̃, T̃ are the curvature and torsion tensor of ∇ and ∇̃, respectively, and
S = ∇− ∇̃ is the tensor.

Definition 4.2.7. Let (M,K,∇) be a manifold endowed with a geometrical structure and an
affine connection ∇. We will say that (M,K,∇) is a reductive locally homogeneous manifold
with ∇ if it is reductive locally homogeneous associated with a Lie pseudo-group contained in
Affloc(M,∇).
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4.3 AS-manifolds and Homogeneous Structures

The aim of this section is to generalize the Riemannian infinitesimal constructions in Sec.1.3.1
to a general framework (dropping the metric dependence). That is, the Riemannian infinites-
imal models (see (1.10)), Nomizu construction (see (1.12)) and transvection construction
(see (1.13)).

In the previous section, we have proven that locally homogeneous and reductive manifolds
are AS-manifolds, and vice versa. We now study AS-manifolds from an infinitesimal, or even
pointwise, point of view.

Let V be a vector space of dimension n. Let

R̃ : V ∧V −→ End(V ), T̃ : V −→ End(V ),

be linear homomorphisms and let K be a set of linear tensors on V . We will say that (R̃, T̃ ) is
an infinitesimal model associated with K if it satisfies

T̃XY + T̃Y X = 0, (4.4)

R̃XY Z + R̃Y X Z = 0, (4.5)

R̃XY · T̃ = R̃XY · R̃ = 0, (4.6)

S
XY Z

R̃XY Z + T̃T̃XY Z = 0, (4.7)

S
XY Z

R̃T̃XY Z = 0, (4.8)

R̃XY ·K = 0, (4.9)

where S
XY Z

is the cyclic sum, and R̃XY acts in a natural way in the tensor algebra of V as a

derivation. In addition, we say that two infinitesimal models (V, R̃, T̃ ) and (V ′, R̃′, T̃ ′) are
isomorphic if there exists a linear isomorphism f : V −→V ′ such that

f R̃ = R̃′, f T̃ = T̃ ′, f K = K′. (4.10)

This notion of infinitesimal model is a generalization of the one given, see (1.10) and [Nom54;
LT93].

Theorem 4.3.1. Given a point p0 ∈ M of an AS-manifold (M,K, ∇̃), then (V = Tp0M, T̃p0, R̃p0)

is an infinitesimal model associated with Kp0 , where R̃ and T̃ are the curvature and torsion of
∇̃.
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Proof. Let (M,K, ∇̃) be an AS-manifold. It satisfies

∇̃R̃ = 0, ∇̃T̃ = 0, ∇̃K = 0,

given a point p0 ∈ M and we recall V = Tp0M, R̃0 = R̃p0 , T̃0 = T̃p0 and K0 = Kp0 , hence, (R̃0, T̃0)

is an infinitesimal model. Indeed, we deduce (4.4) and (4.5) from the skew-symmetric definition
of torsion and curvature. Equations (4.6) and (4.9) come from ∇̃R̃ = 0, ∇̃T̃ = 0, ∇̃K = 0.
Finally, equations (4.7) and (4.8) are the Bianchi identities.

Note that, Thm. 4.3.1 provides an infinitesimal model for every point in an AS-manifold.
Now, we show it does not depend the chosen point p0 ∈ M. Indeed,

Theorem 4.3.2. Let (M,K, ∇̃) be an AS-manifold. Given two different points p0, p1 ∈ M their
associated infinitesimal models are isomorphic.

Proof. By [KN63, p. 262, Cor. 7.5], there exists a locally affine transformation ϕ sending p0 to
p1. Because of being affine, we have that ϕ∗ is a linear isomorphism between Tp0M and Tp1M
satisfying ϕ∗T̃p0 = T̃p1 and ϕ∗R̃p0 = R̃p1 . By ∇̃K = 0, we conclude that ϕ∗Kp0 = Kp1 .

Hence, associated with any AS-manifold there exists an unique infinitesimal model up to
isomorphism. Furthermore, when different manifolds have isomorphic associated infinitesimal
models, from [KN63, p. 261, Thm. 7.4] we get the following result.

Theorem 4.3.3. Let (M,K, ∇̃) and (M′,K′, ∇̃′) be two AS-manifold and let p0 ∈ M and p′0 ∈ M′

be two points such that their associated infinitesimal models are isomorphic. Then there exists
a local affine diffeomorphism between p0 and p′0 sending to K to K′.

So, we define the notion of AS-isomorphism between AS-manifolds.

Definition 4.3.4. Let (M,K, ∇̃) and (M′,K′, ∇̃′) be two AS-manifold and let p0 ∈ M and
p′0 ∈ M′ be two points. We say (M,K, ∇̃) and (M′,K′, ∇̃′) are AS-isomorphic if there exists a
local affine diffeomorphism between p0 and p′0 sending K to K′.

From every infinitesimal model (R̃, T̃ ) on V associated with K, we can construct a transitive
Lie algebra using the so-called Nomizu construction, see (1.12). Let

g0 =V ⊕h0, (4.11)

where h0 = {A ∈ end(V ) : A · R̃ = 0, A · T̃ = 0, A ·K = 0}, equipped with the Lie bracket

[A,B] = AB−BA, A, B ∈ h0,

[A,X ] = AX , A ∈ h0, X ∈V,

[X ,Y ] =−T̃XY + R̃XY , X , Y ∈V.

(4.12)
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Recall that, we can also consider the transvection algebra g′0 =V ⊕h′0, see (1.13), where h′0
is the Lie algebra of endomorphisms generated by R̃XY with X , Y ∈V , equipped with brackets
as above. Then we have shown that any infinitesimal model has Nomizu and transvection
constructions.

Two Nomizu constructions (g0,h0, T̃ , R̃,K) and (g′0,h
′
0, T̃

′, R̃′,K′) are isomorphic if there
exists a Lie algebra isomorphism F : g0 −→ g′0 such that F(V ) = V ′, F sends K to K′ and
F(h0) = h′0.

Proposition 4.3.5. Two infinitesimal models are isomorphic if and only if their Nomizu con-
structions are isomorphic.

Proof. Suppose that V and V ′ are two vector space with two infinitesimal models (R̃, T̃ ) and
(R̃′, T̃ ′). Then there is an isomorphism f : V −→V ′ which satisfies (4.10). We thus consider
f̃ : g0 −→ g′0 such that f̃ |V = f and f̃ |h0(A) = f ◦A◦ f−1.

Conversely, given a Lie algebra homomorphism F : g0 −→ g′0 such that F(V ) = V ′ and
F(h0) = h′0, then f = F |V is the isomorphism. Indeed, by definition f sends K to K′ and, taking
into account that F is a Lie algebra morphism, we obtain that f sends R̃ to R̃′ and T̃ to T̃ ′.

Surprisingly, the converse is not true: two different Nomizu constructions could give rise to
the same Lie algebra, see [Luj14, p. 36].

Summarizing, we have proved that there exists a morphism from the class of AS-manifolds
to the class of infinitesimal models. Moreover, every infinitesimal model has associated a
Nomizu construction. Now, we prove the main theorem of the section, which shows that the
morphism is surjective. Note that obviously it can not be injective. The proof of this result for
Riemannian manifolds can be found in [LT93].

Theorem 4.3.6. Let V be a vector space and (R̃0, T̃0) an infinitesimal model associated with
tensors K0. Then, there is an AS-manifold M with a geometrical structure defined by the tensor
field K and a point p0 ∈ M such that

Kp0 = K0,

and the curvature R̃ and torsion T̃ of the AS-connection ∇̃ verify that R̃p0 = R̃0 and T̃p0 = T̃0.
Any other manifold satisfying all this is locally affine diffeomorphic to (M, ∇̃).

Proof. From the model (R̃0, T̃0) on V associated with K0, we can construct its transitive
Lie algebra using the Nomizu construction, g0 = V ⊕ h0 (see (4.11)). We consider a basis
{e1, . . . ,en} of V and a basis {A1, . . . ,Am} of h0 and, respectively, we take its dual basis
{θ 1, . . . ,θ n} and {ω1, . . . ,ωm}. Let G be the connected, simply connected Lie group associated
with g0. Indeed, the vector elements ei and Ak and the 1-forms θ i and ωk of g0 can be regarded
as left-invariant vector fields and 1-forms on G.
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Let φ = (x1, . . . ,xn+m) : U ⊂ G −→V ⊂ Rn+m be a local coordinate system defined on a
neighbourhood U of the identity e of G such that,

dxi|e = θ
i|e, i ∈ {1, . . . ,n}. (4.13)

We now consider the immersion map f : W ⊂V −→ G given by

f (y1, . . . ,yn) = φ
−1(y1, . . . ,yn,0, . . . ,0)

where W is an open neighbourhood of 0 ∈ Rn. We define,

θ̃
i = f ∗(θ i), ẽi = f ∗(ei), i = 1, . . . ,n.

Because of (4.13), the 1-forms θ̃ 1, . . . , θ̃ n are linearly independent at 0. Then, let M ⊂W be
the open neighbourhood of 0 such that θ̃ 1, . . . , θ̃ n are linearly independent at each point of M.

We consider ω i
j = ∑

m
k=1 θ i(Ak(e j))ω

k and ω̃ i
j its pull back to M. Let ∇̃ be the linear

connection whose connection form is ω̃ = (ω̃ i
j). We now consider the pull-back to M of the

extension R̃, T̃ and K of the tensor elements R̃0, T̃0 and K0 to the Lie group G. Note that ω̃

takes values in h0. Therefore, by definition of h0, we have ω(X) · R̃ = 0, ω(X) · T̃ = 0 and
ω(X) ·K = 0. Indeed, this last identities mean that ∇̃ makes parallel R̃, T̃ and K.

To end, we need to prove that R̃ and T̃ are the curvature and torsion tensors of ∇̃. First,
applying the definition of the exterior differential and (4.12), we have that,

dθ
i +ω

i
j ∧θ

j =
1
2

n

∑
j,k=1

θ
i((T̃0)(e j,eh))θ

j ∧θ
h

dω
i
j +

n

∑
k=1

ω
i
k ∧ω

k
j =

1
2

n

∑
h,k=1

θ
k((R̃0)(ei,e j,eh))θ

h ∧θ
k.

If we pull-back these two equations to M, they are the two structural equations for the connection
form ω . Therefore, the curvature and torsion of ∇̃ are the tensors whose components in the
basis {θ 1, . . . ,θ n} are constants θ̃ i((T̃0)(ẽ j, ẽh)) and θ k((R̃0)(ẽi, ẽ j, ẽh)), respectively. Finally,
the curvature and torsion of ∇̃ coincide with R̃ and T̃ .

We finally consider the particular case where M is a manifold with a geometric structure K
equipped with a connection ∇ and an AS-connection ∇̃ such that,

∇̃R̃ = 0, ∇̃T̃ = 0, ∇̃S = 0, ∇̃K = 0,
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where S = ∇− ∇̃. So we can consider,

TXY = T̃XY +SXY −SY X , RXY = R̃XY +[SY ,SX ]−ST̃XY .

where R and T are the curvature and torsion of ∇.

Corollary 4.3.7. Let (M,S,K, ∇̃) and (M′,S′,K′, ∇̃′) be two AS-manifolds with homogeneous
structures S and S′. Then, there exists an AS-isomorphism between M and M′ if and only if
there exists an affine local diffeomorphism between (M,∇) and (M′,∇′) sending S to S′ and K
to K′.

Given a fixed point p0 ∈ M, by Thm. 4.3.1, we can consider an infinitesimal model
(Tp0M, R̃p0, T̃p0) associated with Sp0 and Kp0 with

(Tp0)XY = (T̃p0)XY +(Sp0)XY − (Sp0)Y X ,

(Rp0)XY = (R̃p0)XY +
[
(Sp0)(Sp0)X

]
+(Sp0)(T̃p0)XY ,

where Rp0 and Tp0 are the curvature and torsion of ∇ in p0.

Corollary 4.3.8. Let (V, R̃, T̃ ) and (V ′, R̃′, T̃ ′) be two infinitesimal models associated with S, K
and S′, K′, respectively, with

TXY = T̃XY +SXY −SY X , RXY = R̃XY +[SY ,SX ]−ST̃XY ,

T ′
XY = T̃ ′

XY +S′XY −S′Y X , R′
XY = R̃′

XY +[S′Y ,S
′
X ]−S′T̃ ′

XY .

Hence, there exists an isomorphism of infinitesimal models if and only if there exists a linear
isomorphism f : V −→V ′ such that,

f R = R′, f T = T ′ f S = S′, f K = K′. (4.14)





Chapter 5

Symplectic AS-manifolds

As we have explained, see 1.3.2, one major advantage of homogeneous structure tensors is the
geometric information that one can get from their classification (we refer again to [BGO11;
CC19] for surveys collecting the main contributions on this topic). Now we intend to apply sim-
ilar ideas to the constructions of the previous chapter on general homogeneous manifolds, with
classifications of the torsion of the Ambrose-Singer connection or, whenever there is another
background connection, the corresponding homogeneous structure tensors. The achievement
of these classifications shape an ambitious project to be developed in future works (almost
complex, complex, contact, Poisson, etc). To begin with, in this chapter, we start this program
in the case of (almost) symplectic manifolds, where explicit expressions of the classes of
torsion are given. Furthermore, if the manifold is Fedosov (it has a symplectic background
connection) the classification is given for homogeneous structure tensors. The relationship
between both points of view is analyzed. This instance is purely non-metric and the classical
results of [Kir80] cannot be applied, as we show below.

In all the known cases in the literature, the classifications of homogeneous structure tensors
have some classes whose dimension grows linearly with respect to the dimension of the
manifold. As we have already said, these are the so-called classes of linear type, and they
usually provide exciting geometric characterizations (see, again, [BGO11; CC19]). Taking
inspiration from these facts, we tackle the study of classes of linear type of Fedosov manifolds
in the last section of this chapter. In this case, again, the geometric result is remarkable as
it characterizes Hamiltonian (locally) homogeneous foliations of leaves which are flat with
respect to the symplectic background connection. We provide two low-dimensional examples,
leaving the study of higher-dimensional homogeneous Fedosov manifolds for future research.
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5.1 Symplectic manifolds and Fedosov manifolds

An almost symplectic manifold (M,ω) is a differentiable manifold M equipped with a non-
degenerate 2-form, ω . Additionally, if ω is closed, then it is called a symplectic manifold.

As it is well known (see [AP15, Thm. 2.1]), the closeness condition is equivalent to the
existence of a torsion free and symplectic connection ∇, that is,

∇ω = 0, T = 0,

where T is the torsion of ∇. Nevertheless, this connection is not necessarily unique as it is the
Levi-Civita connection. Finally, a Fedosov manifold (M,ω,∇) is a symplectic manifold with a
torsion free and symplectic connection.

5.2 Invariant Sp(V,ω)-submodules of S2V ∗⊗V ∗ and ∧2V ∗⊗V ∗

Let (V,ω) be a symplectic vector space. Based on the classifications given in [AP15], we give
below explicit expressions of the invariant Sp(V )-submodules of S2V ∗⊗V ∗ and ∧2V ∗⊗V ∗.
For that, we identify a symplectic vector space V and its dual V ∗ by

(·)∗ : V −→V ∗

X 7−→ X∗(Y ) = ω(X ,Y ).

Furthermore, we can transfer the symplectic form to V ∗ as ω∗(X∗,Y ∗) = ω(X ,Y ), that is, we
regard (V,ω) and (V ∗,ω∗) as symplectomorphic.

For the sake of simplicity, from now on, we denote ωXY = ω(X ,Y ).

Theorem 5.2.1. If n≥ 2, the space of cotorsion-like tensors has the decomposition in irreducible
Sp(V )-submodules as

S2V ∗⊗V ∗ = S1(V )+S2(V )+S3(V )

where,

S1(V ) =
{

S ∈ S2V ∗⊗V ∗ : SXY Z = ωZY ωXU +ωZX ωYU ,U ∈V
}
,

S2(V ) =
{

S ∈ S2V ∗⊗V ∗ : S
XY Z

SXY Z = 0, s13(S) = 0
}
,

S3(V ) =
{

S ∈ S2V ∗⊗V ∗ : SXY Z = SXZY

}
= S3V ∗,
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and

s13(S)(Z) =
n

∑
i=1

(
SeiZei+n −Sei+nZei

)
,

for a symplectic base {e1, . . . ,en,en+1, . . . ,e2n}. If n = 1, then S2V ∗⊗V ∗ = S1(V )+S3(V ).
The dimensions of the subspaces are

dim(S1(V )) = 2n, dim(S2(V )) =
8
3
(n3 −n), dim(S3(V )) =

(
2n+2

3

)
.

Proof. Given a symplectic basis {e1, . . . ,en,en+1, . . . ,e2n} of V , we define the morphisms

ϕ : S2V ∗⊗V ∗ −→V ∗

(u∗1u∗2 ⊗ v∗) 7−→ ωu1,vu∗2 +ωu2,vu∗1,

π : S2V ∗⊗V ∗ −→ S3V ∗

(u∗1u∗2 ⊗u∗) 7−→ 1
3

u∗u∗1u∗2,

and

ξ : V ∗ −→ S2V ∗⊗V ∗

u∗ 7−→ 1
2n+1

n

∑
i=1

e∗i u∗⊗ e∗i+n − e∗i+nu∗⊗ e∗i .

By [AP15, Thm. 1.1], applied to (V ∗,ω∗), we decompose

S2V ∗⊗V ∗ = S3V ∗+A′+V ∗

where A′ = ker(ϕ)∩ker(π) and V ∗ is isomorphic to im(ξ ). We define S1(V ) :=V ∗, S2(V ) :=
A′ and S3(V ) := S3V ∗.

For the explicit expression of S1(V ), given W ∗ ∈V ∗ we have

ξ (W ∗)XY Z =
1

2n+1

(
n

∑
i=1

xi+nωWY zi + yi+nωWX zi − xiωWY zi+n − yiωWX zi+n

)
=

1
2n+1

(ωZX ωWY +ωZY ωWX) .

Hence, taking U = 1
2n+1W , we get the required result for S1(V ).
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With respect to the explicit expressions of S2(V ), for

S =
1
2

2n

∑
i, j,k=1

Seie jeke∗i e∗j ⊗ e∗k ∈ S2V ∗⊗V ∗,

we have

ϕ(S) =
1
2

2n

∑
i, j,k=1

Seie jekϕ
(
e∗i e∗j ⊗ e∗k

)
=

1
2

2n

∑
i, j,k=1

Seie jek

(
ωeieke∗j +ωe jeke∗i

)
=

2n

∑
i, j,k=1

1
2
(
Seie jek +Se jeiek

)
ωeieke∗j

=
2n

∑
j=1

n

∑
i=1

1
2
(
Seie jei+n +Se jeiei+n −Sei+ne jei −Se jei+nei

)
e∗j

=
2n

∑
j=1

n

∑
i=1

(
Seie jei+n −Sei+ne jei

)
e∗j .

Hence, S ∈ kerϕ if and only if s13(S) = 0 as in the statement. Moreover, 1
3e∗i e∗je

∗
k = e∗i e∗j ⊗e∗k +

e∗ke∗i ⊗ e∗j + e∗je
∗
k ⊗ e∗i and therefore

π(S)XY Z =S
XY Z

SXY Z,

so that we have the expression for the tensors in S2(V ). The dimensions come from [AP15,
Thm. 1.1].

Now, using these expressions we are going to give the explicit classes of torsion-like tensors.

Theorem 5.2.2. If n ≥ 3, the space of torsion-like tensors has the decomposition in irreducible
Sp(V )-submodules as

∧2V ∗⊗V ∗ = T̃1(V )+ T̃2(V )+ T̃3(V )+ T̃4(V )
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where

T̃1(V ) =
{

T̃ ∈ ∧2V ∗⊗V ∗ : T̃XY Z = 2ωXY ωZU +ωXZωYU −ωY ZωXU , U ∈V
}
,

T̃2(V ) =
{

T̃ ∈ ∧2V ∗⊗V ∗ : S
XY Z

T̃XY Z = 0, t12(T̃ ) = 0
}
,

T̃3(V ) =
{

T̃ ∈ ∧2V ∗⊗V ∗ : T̃XY Z = ωXY ωUZ +ωY ZωUX +ωZX ωUY ,U ∈V
}
,

T̃4(V ) =
{

T̃ ∈ ∧2V ∗⊗V ∗ : T̃XY Z =−T̃XZY , t12(T̃ ) = 0
}
,

and

t12(T̃ )(Z) =
n

∑
i=1

T̃eiei+nZ,

for a symplectic basis {e1, . . . ,en,en+1, . . . ,e2n}. If n= 2, then ∧2V ∗⊗V ∗ = T̃1(V )+ T̃2(V )+

T̃4(V ). If n = 1, then ∧2V ∗⊗V ∗ = T̃1(V ).
In addition,

dim(T̃1(V )) = dim(T̃3(V )) = 2n, dim(T̃2(V )) =
8
3
(n3 −n), dim(T̃4(V )) =

2
3

n(2n2 −3n−2).

Proof. For a symplectic basis {e1, . . . ,en,en+1, . . . ,e2n} of V , we define the morphisms

A2 : S2V ∗⊗V ∗ −→ ∧2V ∗⊗V ∗

(u∗1u∗2 ⊗ v∗) 7−→ v∗∧u∗1 ⊗u∗2 + v∗∧u∗2 ⊗u∗1,

C : ∧2 V ∗⊗V ∗ −→V ∗

(u∗1 ∧u∗2 ⊗ v∗) 7−→ ωu1u2v∗+ωvu1u∗2 +ωu2vu∗1,

and

η : V ∗ −→∧3V ∗

u∗ 7−→
n

∑
i=1

e∗i ∧ e∗i+n ∧u∗.

By [AP15, Thm. 1.2], applied to (V ∗,ω∗), we decompose

∧2V ∗⊗V ∗ =V ∗
1 +A′+V ∗

2 +T ′
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where, V ∗
1 = A2(S1(V )), A′ = A2(S2(V )), T ′ = kerC∩∧3V ∗ and V ∗

2 = Im(η) is the vector
space such that V ∗

2 ⊂ ∧3V ∗ and V ∗
2 + T ′ = ∧3V ∗. We define T̃1(V ) := V ∗

1 , T̃2(V ) := A′,
T̃3(V ) :=V ∗

2 and T̃4(V ) := T ′.
First, as

A2(S)XY Z = SY ZX −SXZY , (5.1)

we get the expression for the tensors in T̃1(V ) in view of the expression of S1(V ) in Thm. 5.2.1.
Indeed, by equation (5.1), we infer the explicit expression of T̃1(V ).
To study the explicit expression of T2(V ), we have to consider the following exact sequence,

[AP15, Eq. (1.3)],

0 −→ S3V ∗ A1−→ S2V ∗⊗V ∗ A2−→∧2V ∗⊗V ∗ A3−→∧3V ∗ −→ 0

where A1 = π and A3(u∗1 ∧u∗2 ⊗v∗) = u∗1 ∧u∗2 ∧v∗. Note that, u∗1 ∧u∗2 ∧v∗ = u∗1 ∧u∗2 ⊗v∗+v∗∧
u∗1 ⊗u∗2 +u∗2 ∧ v∗⊗u∗1, hence,

A3(T̃ )XY Z =S
XY Z

T̃XY Z.

Therefore, T̃2(V ) is generated by T̃XY Z = SY ZX −SXZY with S ∈ S2V ∗⊗V ∗ and s13(S) = 0.
The first condition is equivalent to T̃ ∈ ker(A3), or equivalently, S

XY Z
T̃XY Z = 0. The second

condition is equivalent t12(T ) = 0 straightforwardly. For the explicit expressions of T̃4(V ),
given

T̃ =
1
2

2n

∑
i, j,k=1

T̃eie jeke∗i ∧ e∗j ⊗ e∗k ∈ ∧2V ∗⊗V ∗,

we have

C(T̃ ) =
1
2

2n

∑
i, j,k=1

T̃eie jekC(e∗i ∧ e∗j ⊗ e∗k)

=
1
2

2n

∑
i, j,k=1

T̃eie jek

(
ωeie je

∗
k +ωekeie

∗
j +ωe jeke∗i

)
=

1
2

(
2n

∑
i, j,k=1

T̃eie jekωeie je
∗
k +

2n

∑
i, j,k=1

T̃eie jekωekeie
∗
j +

2n

∑
i, j,k=1

T̃eie jekωe jeke∗i

)
.

By reordering the indices, we group the three summations in only one,

C(T̃ ) =
1
2

2n

∑
i, j,k=1

(
T̃eie jek + T̃ekeie j + T̃e jekei

)
ωeie je

∗
k .
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Thus, we apply that {e1, . . . ,e2n} is a symplectic basis,

C(T̃ ) =
2n

∑
k=1

n

∑
i=1

1
2
(
T̃eiei+nek + T̃ekeiei+n + T̃ei+nekei − T̃ei+neiek − T̃ekei+nei − T̃eiekei+n

)
e∗k

=
2n

∑
k=1

n

∑
i=1

(
T̃eiei+nek + T̃ekeiei+n + T̃ei+nekei

)
e∗k .

Therefore, for T̃ ∈ ∧3V ∗, C(T̃ ) = 0 is equivalent to t12(T̃ ) = 0.
Finally, with respect to the explicit expressions of T̃3(V ), given U∗ ∈V ∗ with dual element

U ∈V ,

η(U∗) =
n

∑
i=1

e∗i ∧ e∗i+n ∧U∗

=
n

∑
i=1

(
e∗i ∧ e∗i+n ⊗U∗+U∗∧ e∗i ⊗ e∗i+n + e∗i+n ∧U∗⊗ e∗i

)
,

evaluating in X , Y , Z, we infer,

η(U∗)XY Z =
n

∑
i=1

(
(xiyi+n − xi+nyi)ωUZ+

+(ωUX yi+n −ωUY xi+n)(−zi)+

+(−xiωUY − (−yi)ωUX)zi+n

)
= ωXY ωUZ +ωY ZωUX +ωZX ωUY

Therefore, T̃3(V ) has the claimed form.

Remark 5.2.3. We have the following sums

• T̃1(V )+ T̃2(V ) = {T̃ ∈ ∧2V ∗⊗V ∗ : S
XY Z

TXY Z = 0},

• T̃2(V )+ T̃4(V )+W = {T̃ ∈ ∧2V ∗⊗V ∗ : t12(T̃ ) = 0},

• T̃3(V )+ T̃4(V ) = ∧3V ∗,

• T̃2(V )+ T̃4(V ) = {T̃ ∈ ∧2V ∗⊗V ∗ : t12(T̃ ) = 0, t13(T̃ ) = 0}.

Where,

W =
{

T̃ ∈ ∧2V ∗⊗V ∗ : T̃XY Z = ωXY ωZU −nωXZωYU +nωY ZωXU ,U ∈V
}
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and

t13(T̃ )(Y ) =
n

∑
i=1

(
T̃eiYei+n − T̃ei+nYei

)
The first two come directly from the expressions of the classes in the previous Theorem
and the fact that W is the linear subspace of T̃2(V )+ T̃3(V ) whose elements vanish for t12.
With respect to the third identity, we note that IdV ∗ = 1

3(n−1)C ◦η , so that we can decompose
∧3V ∗ = kerC+ Imη = T̃3(V )+ T̃4(V ). The last identity is a consequence of the fact that t13

vanishes on T̃2(V )+ T̃4(V ) and does not vanish on W .

5.3 Classifications for almost symplectic and Fedosov AS-manifolds

5.3.1 Almost symplectic AS-manifolds

We now want to classify the infinitesimal models in the case of vector spaces V endowed with
a linear symplectic tensor K = ω . If (V, R̃, T̃ ) and (V ′, R̃′, T̃ ′) are two infinitesimal models
associated with symplectic linear tensors ω and ω ′, respectively, with dimV = dimV ′, since
there are symplectomorphisms between V and V ′, we can identify V ′ with V and ω ′ with ω .
From (4.10), isomorphisms f : V −→V of almost symplectic infinitesimal models satisfy

f R̃ = R̃′, f T̃ = T̃ ′, f ω = ω,

and in particular f ∈ Sp(V,ω) = Sp(V ). If we decompose curvature-like or torsion-like tensor
spaces in Sp(V )-irreducible submodules, then we get a necessary condition to be isomorphic
as models, by virtue of Thm. 4.3.3, also as AS-manifolds.

For the classification of the torsion T̃ into Sp(V )-classes, we will work both with (1,2)-
tensors and (0,3)-tensors given by the isomorphism

T̃XY Z = ω
(
T̃XY,Z

)
, X , Y, Z ∈V.

Let (M,ω) be an almost symplectic AS-manifold. We denote by T̃ the set of homogeneous
almost symplectic torsions, that is, the torsions of an AS-connection on (M,ω). Given any
p0 ∈ M, from Thm. 4.3.1, (V = Tp0M, R̃p0, T̃p0) is an infinitesimal model associated with
ωp0 . Thus Tp0 ∈ ∧2V ⊗V , and the classification given in Thm. 5.2.2 gives us the following
decomposition

T̃ = T̃1 + T̃2 + T̃3 + T̃4
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where

T̃1 =
{

T̃ ∈ T̃ : T̃XY Z = 2ωXY ωZU +ωXZωYU −ωY ZωXU ,U ∈ X(M)
}
,

T̃2 =
{

T̃ ∈ T̃ : S
XY Z

T̃XY Z = 0, t12(T̃ ) = 0
}

T̃3 =
{

T̃ ∈ T̃ : T̃XY Z = ωXY ωUZ +ωY ZωUX +ωZX ωUY ,U ∈ X(M)
}
,

T̃4 =
{

T̃ ∈ T̃ : T̃XY Z =−T̃XZY , t12(T̃ ) = 0
}
.

Definition 5.3.1. Let T̃ ∈ T̃ , T ̸= 0 be a homogeneous almost symplectic torsion. It is said to
be of type i (resp. type i+ j or i+ j+ k) if T̃ lies in T̃i (resp. Ti +T j or Ti +T j +Tk).

Almost symplectic AS-manifolds may thus belong to sixteen classes defined by its torsion
tensor.

Theorem 5.3.2. Let (M,ω) be an almost symplectic AS-manifold. Then, (M,ω) is a symplectic
manifold if and only if the torsion of ∇̃ lies in T̃1 + T̃2.

Proof. If (M,ω) is a symplectic manifold, there is a torsion-free symplectic connection ∇

(see [AP15, Thm. 2.1]). The difference S = ∇−∇̃ is a (1,2)-tensor such that T̃XY = SY X −SXY .
Then T̃XY Z = A2(−S) = SXZY − SY ZX , where SXY Z = ω(SZX ,Y ) and T̃XY Z = ω(T̃XY,Z). In
particular, T̃ lies in T1 +T2.

Conversely, if T̃ lies in T1 +T2, then there exists at least one tensor S ∈ S2T ∗M ⊗T ∗M,
such that, T̃XY Z = SY ZX −SXZY . We can consider the tensor SXY with ω(SZX ,Y ) = SXY Z . It
follows that T̃XY = SXY −SY X with ω(T̃XY,Z) = T̃XY Z and S preserves the symplectic form.
The connection ∇ = ∇̃−S is symplectic.

5.3.2 Fedosov AS-manifolds

We now want to study infinitesimal models associated with a linear symplectic tensor ω and
a homogeneous structure S as in Cor. 4.3.8. Let (V, R̃, T̃ ) and (V ′, R̃′, T̃ ′) be two infinitesimal
models associated with (1,2) linear tensors S and S′, respectively, with

TXY = T̃XY +SXY −SY X , RXY = R̃XY +[SY ,SX ]−ST̃XY ,

T ′
XY = T̃ ′

XY +S′XY −S′Y X , R′
XY = R̃′

XY +[S′Y ,S
′
X ]−S′T̃ ′

XY ,

and also associated with symplectic linear tensors ω and ω ′, respectively, with dimV = dimV ′.
Since there are symplectomorphisms between V and V ′, we can identify V with V ′ and ω with
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ω ′. Therefore, by (4.14), there is a linear isomorphism f : V −→V such that,

f R = R′, f T = T ′, f S = S′, f ω = ω, (5.2)

and in particular f ∈ Sp(V,ω) = Sp(V ). If we decompose cotorsion-like, curvature-like or
torsion-like tensor spaces in Sp(V )-irreducible submodules, then we get a necessary condition
to be isomorphic as models, by virtue of Thm. 4.3.3, also as AS-manifolds.

Let (M,ω,∇) be a Fedosov manifold (dimM = 2n), that is, a symplectic manifold equipped
with affine and torsion free connection such that ∇ω = 0 (cf. [GRS98]). Let S = ∇− ∇̃ be a
homogeneous structure tensor, i. e.,

∇̃R = 0, ∇̃S = 0, ∇̃ω = 0.

Since ∇ω = 0, the second condition is equivalent to S ·ω = 0. We will work with S both as a
(1,2)-tensor and a (0,3)-tensor by the isomorphism

SXY Z = ω(SZX ,Y ).

The condition S ·ω = 0 is equivalent to

SXY Z = SY XZ

that is, S ∈ S2T ∗M⊗T ∗M.
From Thm. 4.3.1, given p0 ∈M, we can consider the infinitesimal model (V =Tp0M, R̃p0, T̃p0)

associated with Sp0 and ωp0 with

(Tp0)XY = (T̃p0)XY +(Sp0)XY − (Sp0)Y X ,

(Rp0)XY = (R̃p0)XY +[(Sp0)Y ,(Sp0)X ]− (Sp0)(T̃p0)XY ,

where Rp0 and Tp0 are the curvature and torsion of ∇ at p0 and Sp0 ∈ S2V ∗⊗V ∗. We denote by
S the set of homogeneous structures on a Fedosov manifold (M,ω,∇). Hence, by Thm. 5.2.1,
we have the following classification of homogeneous structure tensors in Sp(V )-invariant
subspaces:

S = S1 +S2 +S3,
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where

S1 =
{

S ∈ S : SXY Z = ωZY ωXU +ωZX ωYU ,U ∈ X(M)
}
,

S2 =
{

S ∈ S : S
XY Z

SXY Z = 0, s13(S) = 0
}
,

S3 =
{

S ∈ S : SXY Z = SXZY

}
,

and

s13(S)(Z) =
n

∑
i=1

(
SeiZei+n −Sei+nZei

)
,

for a symplectic basis {e1, . . . ,en,en+1, . . . ,e2n} of Tp0M.

Definition 5.3.3. Let S ∈ S S ̸= 0, be a homogeneous Fedosov structure. It is of type i if S lies
in Si and correspondingly it is of type i+ j if S lies in Si +S j with i, j ∈ {1,2,3} and i ̸= j.

Hence, Fedosov homogeneous structure are classified into eight different classes.

Remark 5.3.4. In [Vai85] the author gives a decomposition of the curvature tensor of a sym-
plectic connection in two Sp(V )-irreducible submodules: Ricci type and Ricci flat. Hence, by
virtue of (5.2) and Thm. 4.3.3, there are four different classes of symplectic curvature tensor of
Fedosov AS-manifolds. We can combine this idea to refine the classification in Def. 5.3.3 to
get as many as thirty-two different classes of Fedosov AS-manifolds.

With respect to the classification of homogeneous structures in Def. 5.3.3 and the classi-
fication of torsions T̃ o AS-manifolds in Def. 5.3.1, we have the following result which is a
consequence of the expression of A2 in (5.1).

Proposition 5.3.5. Let (M,ω,∇) be a Fedosov manifold equipped with homogeneous structure
S.

• If S ∈ S1, then the torsion T̃ of ∇̃ = ∇−S belongs to T̃1.

• If S ∈ S2, then the torsion T̃ of ∇̃ = ∇−S belongs to T̃2.

• If S ∈ S3, then the torsion T̃ of ∇̃ = ∇−S vanishes. The manifold (M,ω, ∇̃) is a Fedosov
manifold with parallel curvature.

5.4 Fedosov AS-manifold of linear type.

Let (M,ω,∇) be a Fedosov manifold equipped with an AS-homogeneous structure S, that is

∇̃R = 0, ∇̃ω = 0, ∇̃S = 0,
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for S = ∇− ∇̃.

Definition 5.4.1. A homogeneous Fedosov structure S in (M,ω,∇) is said to be of linear type
if it belongs to the class S1, that is

SXY = ω(X ,Y )ξ −ω(Y,ξ )X , (5.3)

for a vector field ξ ∈ X(M).

As we noticed in the metric setting, these are called of linear type because of the dimension
of the class S1 grows linearly with the dimension of the manifold.

Theorem 5.4.2. A Fedosov manifold (M,ω,∇) admitting a homogeneous structure tensor of
linear type does not admit any pseudo-Riemannian metric such that S ·g = 0.

Proof. Let η be a vector such that ω(η ,ξ ) = 1. Let g be a pseudo-Riemannian metric such
that S ·g = 0, that is

0 = g(SXY,Z)+g(Y,SX Z)

= ω(X ,Y )g(ξ ,Z)−ω(Y,ξ )g(X ,Z)+g(Y,ξ )ω(X ,Z)−g(Y,X)ω(Z,ξ ).

Taking Y = Z = η we get g(X ,η) = g(η ,ξ )ω(X ,η). We then get g(η ,X) = 0 for X = ξ and
for X ∈ {v : ω(v,ξ ) = 0}, which is impossible since g is not degenerate.

Remark 5.4.3. This last theorem shows that homogeneous structure tensors on Fedosov mani-
folds can never be studied under the perspective of Kiričenko’s Theorem as they are genuine
non-metric homogeneous objects.

We fix the notation of curvature and torsion tensor fields associated with one connection ∇,

RXY Z =∇[X ,Y ]Z −∇X(∇Y Z)+∇Y (∇X Z),

TXY =∇XY −∇Y X − [X ,Y ],

for the curvature, we will work both with (1,3)-tensors and (0,4)-tensors given by the isomor-
phism,

RXY ZU = ω(RXY Z,U), X , Y, Z,U ∈ T M.

Proposition 5.4.4. The condition ∇̃S = 0 is equivalent to ∇̃ξ = 0.
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Proof. Substituting (5.3) in (∇̃X S)(Y,Z) = ∇̃X(SY Z)−S
∇̃XY Z −SY (∇̃X Z), we get

(∇̃X S)(Y,Z) = ∇̃X (ω(Y,Z)ξ −ω(Z,ξ )Y )

−ω(∇̃XY,Z)ξ +ω(Z,ξ )∇̃XY

−ω(Y, ∇̃X Z)ξ +ω(∇̃X Z,ξ )Y

= X (ω(Y,Z))ξ +ω(Y,Z)∇̃X ξ −X (ω(Z,ξ ))Y −ω(Z,ξ )∇̃XY

−ω(∇̃XY,Z)ξ +ω(Z,ξ )∇̃XY

−ω(Y, ∇̃X Z)ξ +ω(∇̃X Z,ξ )Y.

Using X(ω(Y,Z)) = ω(∇̃XY,Z)+ω(Y, ∇̃X Z) (that is ∇̃ω = 0), we collect the columns and we
get

(∇̃X S)(Y,Z) = ω(Y,Z)∇̃X ξ −ω(Z, ∇̃X ξ )Y.

If ∇̃X S = 0, then ∇̃X ξ is proportional to any vector field Y , and hence ∇̃X ξ = 0. Conversely, if
∇̃X ξ = 0, then, we substitute in the previous equation and get ∇̃X S = 0.

In particular, the vector field ξ defining a homogeneous structure satisfies

∇X ξ = SX ξ = ω(X ,ξ )ξ . (5.4)

Following the ideas of classifications of homogeneous structures of linear type in the
pseudo-Riemannian case (see [CC19, Ch. 5]), we study the curvature and Ricci tensor of ∇.

Proposition 5.4.5. Fedosov AS-manifolds of linear type satisfy,

Rξ XY Z = ωXξ ωY ξ ωZξ R
ξ ξ⊥ξ⊥ξ⊥, (5.5)

RXYUW =
(
−ωXY −ω

ξ⊥X ωY ξ +ω
ξ⊥Y ωXξ

)
ωUξ ωWξ R

ξ ξ⊥ξ⊥ξ⊥ (5.6)

−ωXξ RY ξ⊥UW −ωY ξ R
ξ⊥XUW

for every X, Y , U, W ∈ T M and any ξ⊥ ∈ T M such that ω(ξ⊥,ξ ) = 1.

Proof. From (5.4) and the fact that the torsion of ∇ vanishes, we get

RXY ξ = ω([X ,Y ],ξ )ξ −∇X(ω(Y,ξ )ξ )+∇Y (ω(X ,ξ )ξ )

= ω(∇XY,ξ )ξ −ω(∇Y X ,ξ )ξ −X(ω(Y,ξ ))ξ +Y (ω(X ,ξ ))ξ .
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As ∇ω = 0, this last expression simplifies to RXY ξ = −ω(Y,∇X ξ )ξ +ω(X ,∇Y ξ )ξ which,
again by (5.4), gives

RXY ξ = 0, (5.7)

together with
Rξ XY = RξY X , (5.8)

from the first Bianchi identity.
As RXY ·ω = 0, then,

RXY ZU = RXYUZ. (5.9)

The condition ∇̃R = 0 (that is, ∇X R = SX R) reads

(∇X R)Y ZUW =−RSXY ZUW −RY SX ZUW −RY Z SXUW −RY ZU SXW .

Applying the second Bianchi identity, we get

0 =S
XY Z

(−RSXY ZUW −RY SX ZUW −RY Z SXUW −RY ZU SXW )

=S
XY Z

(
−ωXY Rξ ZUW −ωXZRY ξUW −ωXU RY ZξW −ωXW RY ZUξ

+ωY ξ RXZUW +ωZξ RY XUW +ωUξ RY ZXW +ωWξ RY ZUX
)
,

which by virtue of (5.7), (5.9) and the first Bianchi identity reduces to

0 =S
XY Z

(
ωXY Rξ ZUW +ωXξ RY ZUW

)
. (5.10)

Choosing Z = ξ , we have
ωXξ RξYUW = ωY ξ Rξ XUW . (5.11)

If we choose X = ξ⊥ in (5.11), then, we get RξYUW = ωY ξ R
ξ ξ⊥UW , using symmetry of (5.9)

and applying equation above we have RξYUW = ωY ξ ωUξ R
ξ ξ⊥ξ⊥W , and proceeding in an

analogous way, using (5.8) and (5.9), we conclude (5.5). Substituting Z = ξ⊥ in (5.10) and
using (5.5), we get (5.6).

Remark 5.4.6. Equation (5.10) can be refined using (5.5),

0 =S
XY Z

(
ωXY ωZξ ωUξ ωWξ R

ξ ξ⊥ξ⊥ξ⊥ +ωXξ RY ZUW

)
.

We now proceed by parts to prove the main result of this section (see Thm. 5.4.9) which
characterize Fedosov AS-manifolds of linear type in terms of a foliation of Hamiltonian leaves
of codimension 1.
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Lemma 5.4.7. The distribution D = {X ∈ X(M) : ω(X ,ξ ) = 0} is an integrable distribution.

Proof. Given X , Y ∈ D, we have

ω([X ,Y ],ξ ) = ω(∇XY,ξ )−ω(∇Y X ,ξ ).

As ∇ω = 0, then

ω([X ,Y ],ξ ) = X(ω(Y,ξ ))−ω(Y,∇X ξ )−Y (ω(X ,ξ ))+ω(X ,∇Y ξ ).

Finally, because of (5.4),

ω([X ,Y ],ξ ) =−ω(X ,ξ )ω(Y,ξ )+ω(Y,ξ )ω(X ,ξ ) = 0.

Hence, the distribution D is integrable.

Lemma 5.4.8. The vector field ξ satisfies the following properties,

1. It is a geodesic vector field with respect to ∇.

2. Its flow preserves the symplectic form.

Proof. The first statement comes from (5.4), that is, ∇ξ ξ = 0. With respect to the second item,
using ∇ω = 0 and that ∇ is torsion free, for X ,Y two vector fields

(Lξ ω)(X ,Y ) = ω(∇ξ X ,Y )−ω(∇ξ X ,Y )−ω(X ,∇ξY )

+ω(X ,∇ξY )+ω(∇X ξ ,Y )+ω(X ,∇Y ξ )

= ω(X ,ξ )ω(ξ ,Y )+ω(X ,ξ )ω(Y,ξ ) = 0,

which means that the flow of ξ preserves the symplectic form.

Theorem 5.4.9. Let (M,ω,∇) be a connected and simply-connected Fedosov manifold endowed
with a homogeneous structure S of linear type. Let ξ be the vector field associated with S.
Then:

• the manifold is foliated by the leaves H = c0, c0 ∈R, where H is the Hamiltonian defined
by the Hamilton equation iξ ω = dH,

• the connection ∇ restricts to the leaves and in particular, the leaves are totally geodesic
submanifolds,

• the leaves are flat manifolds.
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Furthermore, if in addition ∇̃ = ∇−S is complete, M is Fedosov homogeneous.

Proof. As M is simply-connected, the invariance of ω with respect to ξ gives the existence of
a function H : M −→ R solving the Hamilton equation iξ ω = dH. For any X ∈ D, we have
dH(X) = ω(ξ ,X) = 0, so that H is constant along the leaves of D. For X ,Y vector fields
tangent to the distribution, ω(∇XY,ξ ) = X(ω(ξ ,Y ))+ω(∇X ξ ,Y ) = 0, and the connection
restricts to the leaves. Finally, the curvature of ∇ vanishes along the leaves by (5.6).

The local version of this last result is straightforward.

Theorem 5.4.10. Let (M,ω,∇) be a Fedosov manifold endowed with a homogeneous structure
S of linear type. Let ξ be the vector field associated with S. Then:

• the manifold is foliated by the leaves locally defined by a Hamiltonian H of the Hamilton
equation iξ ω = dH,

• the connection ∇ restricts to the leaves and in particular, the leaves are totally geodesic
submanifolds,

• the leaves are flat manifolds.

Furthermore, M is locally Fedosov homogeneous.

We finish with two examples of Fedosov homogeneous structures of linear type.

Example 5.4.11. Let M = {(x,y) ∈ R2 : x > 0} be the half-plane endowed with a Fedosov
structure defined by the symplectic form ω = 1

3x2 dx∧dy and the connection ∇ given by the
following non-vanishing Christoffel symbols

Γ
1
11 =− 4

3x
, Γ

2
12 =

2
3x

, Γ
2
21 =− 2

3x
.

We consider the vector field
ξ = x

∂

∂y
,

and the tensor field
SXY = ωXY ξ −ωY ξ X .

One can check that
∇ω = 0, T = 0, ∇̃R = 0, ∇̃S = 0,

where R is the curvature of ∇ and ∇̃ = ∇−S, that is, S is a homogeneous structure of linear
type as in Thm. 5.4.10. The manifold M is foliated by the leaves ({x = constant}) defined
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by the Hamiltonian H(x,y) = −1
3 log(x), the connection ∇ restricts to the leaves, and they

are totally geodesic and flat. Furthermore, since the vector fields x∂/∂x and ξ = x∂/∂y are
complete geodesic vector fields of ∇̃, this connection is complete and M is homogeneous
Fedosov manifold as in Thm. 5.4.9. With respect to the group acting transitively on M, it turns
out that R̃ = 0. The Nomizu construction (4.11) gives M = G, with G = Aff(1)0 the connected
component of the identity of the group of affine transformation of R.

If, instead, we consider

Γ
1
11 =−2

x
,

as the only non-vanishing Christoffel symbol, and (for the sake of convenience with the
computations) ω = 1

x2 dx∧dy, we again get that (M,ω,∇) is a homogeneous Fedosov manifold
of linear type as in Thm. 5.4.9 with ξ = x∂/∂y. In this case, one can check that

R̃ξ ηη =−2ξ , R̃ξ ηξ = 0,

with η = x∂/∂x+y∂/∂y. The algebra g= span{ξ ,η , R̃ξ η} built from the Nomizu construction
is the Lie algebra of the three dimensional Lie group acting on M such that M = G/H with
H ≃ R. One checks that, following the convention of [Bia01, p. 2194], the Lie algebra g of G
is the Lie algebra of type Bianchi VI, with real parameter h = 2.





Chapter 6

The Ambrose-Singer Theorem for
cohomogeneity one Riemannian manifolds

The Tricerri-Vanhecke program was exclusive for pseudo-Riemannian geometry. However,
in Ch. 4 and Ch. 5, we learnt that these techniques can be applied to non-metric frameworks,
such as symplectic homogeneous manifolds. This opens the door to thinking about new
generalizations of the Ambrose-Singer Theorem for non-transitive actions.

A cohomogeneity one action on a Riemannian manifold is an isometric action whose
principal orbits are hypersurfaces. Thus, the action is non-transitive. If a group acts on a
Riemannian manifold with cohomogeneity one, we say that such a manifold is a cohomogeneity
one manifold. These are precisely the objects of study in this chapter. Techniques based
on cohomogeneity one actions have successfully been used to find examples of interesting
geometric structures, such as manifolds with positive curvature, Einstein metrics, or Ricci
solitons.

The aim of this chapter is to initiate a line of research, analogous to Tricerri-Vanhecke’s
program, adapted to cohomogeneity one Riemannian manifolds. This objective is pursued by
achieving the following goals.

In Sec. 6.2, we characterize connected, simply-connected, and complete cohomogeneity one
Riemannian manifolds by the existence of a geodesically complete linear connection satisfying
certain geometric covariant derivative equations. This connection is called cohomogeneity one
AS-connection. Analogous to the transitive framework, we introduce the difference tensor
S = ∇− ∇̃ where ∇̃ is the connection under consideration and ∇ is the Levi-Civita connection.
This is called the cohomogeneity one structure. Afterwards, in Sec. 6.3, we relax the topological
conditions and characterize locally cohomogeneity one Riemannian manifolds, that is, we
assume that there is a Lie pseudo-group of isometries acting on the manifold whose principal
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orbits are hypersurfaces. The existence of cohomogeneity one structures describes the nature
of being a locally cohomogeneity one manifold.

Following the program of [TV83] or [CC19], but with a non-metric perspective, i. e., we
pursue the line of work developed in Ch. 5. Sec. 6.4 decomposes the space of the tensor elements
of cohomogeneity one structures in SO(n)-irreducible submodules. This decomposition yields
four submodules for cohomogeneity structures. One is the homogeneous structure in the leaf;
therefore, we can scrutinize the cohomogeneity one Riemannian action by examining the
projection onto this submodule. Another is the second fundamental form of the leaves.

In Sec. 6.5, we give a formula for the cohomogeneity one structure constructed in the main
theorem of Sec. 6.2. Afterwards, we study the uniqueness of this cohomogeneity one structure
depending on the action. Finally, Sec. 6.6 is dedicated to giving examples of cohomogeneity
one structures in the Euclidean space and the real hyperbolic space.

6.1 Cohomogeneity one Riemannian manifolds

We now give a brief introduction to cohomogeneity one Riemannian manifolds. We refer the
reader to [BCO16] for an introduction to cohomogeneity one actions.

Let (M,g) be a Riemannian manifold and let G be a Lie subgroup of the Lie group
Isom(M,g) of isometries. The action of G may be non-transitive. According to the notation
in [AA93], we say that (M,g) is a Riemannian G-manifold. The orbit space of p is G · p =

{ f · p ∈ M : f ∈ G} and the isotropy group at p is Gp = { f ∈ G : f · p = p}. The orbit space
is an immersed submanifold and the isotropy group is a subgroup of G. In particular, if G acts
transitively, so G · p = M, then (M,g) is a Riemannian homogeneous manifold. Until now, we
have studied transitive actions. From now on, we assume that the action is non-transitive.

Let (M,g) be a Riemannian G-manifold and let (M′,g′) be another Riemannian G′-manifold.
These two are isomorphic if there exists an isometry F : (M,g)−→ (M′,g′) and a Lie group
homomorphism γ : G −→ G′ such that F( f · p) = γ( f ) ·F(p).

The space of orbits of the G-manifold is the quotient M/G := M/ ∼ with respect to the
relation p ∼ q if and only if q = G · p. For example, we consider the flat torus (T2,g) with the
G = R action given by

R×T2 −→ T2

(t, [x,y]) 7−→ [x+ t,y+λ t], λ ∈ R.

For this action, if λ ∈ Q, then M/G is homeomorphic to S1. Otherwise, if λ ∈ R−Q, then
M/G is not even Hausdorff. In this case, the orbits are immersed non embedded submanifolds.
In general, this type of orbits makes the study of the action extremely difficult.
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This obstruction is overcome by assuming the isometric action to be proper. An isometric
action G on (M,g) is proper if and only if

G×M −→ M×M

( f , p) 7−→ (p, f · p)

satisfies that the preimage of any compact set of M ×M is compact in G×M. For proper
actions, the space of orbits is Hausdorff and each orbit is an embedded, closed and compact
submanifold. From now on, assume that M/G is connected and each orbit is an embedded and
closed submanifold.

Definition 6.1.1 ([Pal61, Def. 2.1.1]). Let (M,g) be a Riemannian G-manifold and H is a
closed subgroup of G. A submanifold Σ of M is a slice of p ∈ M if:

1. p ∈ Σ.

2. G ·Σ is an open subset of M.

3. There exists an G-equivariant map F : G ·Σ −→ G/H such that F−1(eH) = Σ, where e
is the neutral element of G.

In particular, if the action is proper then there exists a slice at each point, see [Pal61,
Thm. 2.3.3]. The main consequence of the existence of slices is that we can define a partial
ordering in some classes of the space of orbits. Two orbits G · p and G ·q are of the same type
if Gp and Gq are conjugate. This is an equivalence relation and the class [G · p] is called the
orbit type at p. We say that two classes are ordered as [G · p]≤ [G ·q] if and only if there is a
Lie subgroup in Gp conjugate to Gq. There is an unique largest type of orbits and these orbits
are called principal orbits. We have that:

• The dimension of each principal orbit is maximal;

• The union of principal orbits is an open and dense subset in M.

If an orbit is of maximal dimension, but non-principal, then it is exceptional. If an orbit has
lower dimension that principal orbits, then it is singular.

Definition 6.1.2. A Riemannian G-manifold (M,g) is a cohomogeneity one Riemannian
manifold if the principal orbits are hypersurfaces.
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6.2 Characterization of cohomogeneity one manifolds: global version

A Riemannian manifold (M,g) is said to be a regular cohomogeneity one Riemannian manifold
if there is a group of isometries G ⊂ Isom(M,g) such that M/G is connected and every orbit is
orientable, embedded, closed and principal of codimension one. If the action of a subgroup
G ⊂ Isom(M,g) is proper, and the codimension of a generic orbit is one, then the subset of
principal orbits is a regular cohomogeneity one Riemannian manifold.

Lemma 6.2.1. Let (M,g) be a connected Riemannian manifold equipped with a vector field
ξ ̸= 0. Let ∇̃ be an affine connection such that,

∇̃ξ = 0, ∇̃X g = 0, T̃ (X ,Y ) ∈ D, ∀X , Y ∈ D,

where D = {X : g(X ,ξ ) = 0} and T̃ is the torsion of ∇̃. Then, the distribution D is integrable
and the leaves are totally geodesic submanifolds with respect to ∇̃.

Proof. We take two vector fields X , Y such that g(X ,ξ ) = 0 and g(Y,ξ ) = 0. Taking derivatives
of these expressions, and using ∇̃X g = 0 and ∇̃ξ = 0, we have that

0 = g(∇̃Y X ,ξ )+g(X , ∇̃Y ξ ) = g(∇̃Y X ,ξ ), 0 = g(∇̃XY,ξ )+g(Y, ∇̃X ξ ) = g(∇̃XY,ξ ).

Then g([X ,Y ],ξ ) = g(−T̃ (X ,Y ),ξ ) = 0 so that D is integrable. From the Frobenious Theorem,
we have a foliation whose leaves are orthogonal to the vector field ξ .

Theorem 6.2.2. Let (M,g) be a connected, simply-connected, orientable and complete Rie-
mannian manifold. Then the following two are equivalent:

(1) (M,g) is a regular cohomogeneity one Riemannian manifold.

(2) There exists a complete linear connection ∇̃ and a vector field ξ with g(ξ ,ξ ) = 1, such
that,

∇̃R̃ = 0, ∇̃T̃ = 0, ∇̃ξ = 0,

∇̃X g = 0, T̃ (X ,Y ) ∈ D, ∀X ,Y ∈ D,
(6.1)

where D = {X : g(X ,ξ ) = 0} and R̃ and T̃ are the curvature and torsion of ∇̃. Further-
more, the maximal integral leaves of the distribution D (it is integrable according to
Lem. 6.2.1) are embedded and closed.

Proof. The proof of (1) implies (2). Let G be a Lie group of isometries of M acting on M in
such a way that the orbits define a cohomogeneity one foliation.

Since M is orientable, any orbit admits a unit normal vector field ξ .
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Lemma 6.2.3. For any p ∈ M, the geodesic exp(tξp) intersects all the leaves of the foliation
orthogonally.

Proof. Since M is complete, there is a minimizing geodesic γ starting at p and reaching any
orbit O at a point q∈O such that γ(0) = p and γ(b) = q. Let g be the Lie algebra of G, for B∈ g,
we consider the family of curves γε(t) = e−tεBγ(t). Then, γ ′ε(t) =−εB∗

γε (t)
+(Le−tεB)∗γ ′(t) and

g(γ ′ε(t),γ
′
ε(t)) = ε

2g(B∗
γε (t),B

∗
γε (t))−2εg(B∗

γε (t),(Le−tεB)∗γ
′(t))+g(γ ′(t),γ ′(t)).

On the one hand,

g(B∗
γε (t),(Le−tεB)∗γ

′(t)) = g(B∗
γ(t),γ

′(t)) = g(B∗
p,γ

′(0)),

where the last identity is due to the fact that

d
dt

g(B∗
γ(t),γ

′(t)) = g(∇γ ′B
∗,γ ′) = 0,

since B∗ is Killing (and thus, ∇B∗ is skew-symmetric). Then the variation of the energy of the
geodesic γ is

∫ b

0
g(γ ′ε(t),γ

′
ε(t))dt = ε

2
∫ b

0
g(B∗

γε (t),B
∗
γε (t))dt −2bεg(B∗

p,γ
′(0))+

∫ b

0
g(γ ′(t),γ ′(t))dt,

which can be smaller than the energy of γ(t) for small ε . This contradicts that γ is minimizing.
Thus, g(B∗

p,γ
′(0)) = 0, i. e., γ ′(0) is orthogonal to Tp(G · p).

Therefore, γ is the geodesic defined by ξp. And since we have checked that g(B∗
γ(t),γ

′(t))
is constant along γ , we have that γ intersect all the leaves orthogonally.

Now we consider the differentiable map ϕ : R× (G · p)−→ M defined by

ϕt(g · p) = expg·p(tξg·p).

From the lemma above, this map is surjective. On the other hand, since G sends geodesics to
geodesics and g ·ξq = ξg·q because G-orbits are principal, we have that

g ·ϕt(q) = ϕt(g ·q), ∀q ∈ G · p.

In particular, since all orbits are principal (and thus, all isotropy groups are conjugate),

IsotG(p) = IsotG(ϕt(p)),
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where the isotropy IsotG(q) of q ∈ M is the Lie subgroup {h ∈ G : h ·q = q}.
The vector field ξ initially defined on G · p only, can now be extended to M by simply

taking derivatives of ∂ϕ/∂ t, t ∈ R. This is well defined since if we had q = ϕt1(p) = ϕt2(g · p)
with

∂ϕt(p)
∂ t

(t1) =−∂ϕt(g · p)
∂ t

(t2), (6.2)

then
ϕ t1+t2

2
(p) = ϕ t1+t2

2
(g · p) = g ·ϕ t1+t2

2
(p),

that is, g ∈ IsotG(ϕ t1+t2
2
(p)) = IsotG(p). But the uniqueness of geodesics would make (6.2)

impossible for g · p = p.
The orbits of ξ are all of the same type. There is thus a group A = R or S1 and we have a

transitive action on the left

(A×G)×M −→ M

((ϕt ,g), p) 7−→ ϕt(g · p) = g ·ϕt(p).

Let Isot(p) = {(ϕt ,g) ∈ A×G : ϕt(g · p) = p} denote the isotropy of p by the action
of A×G. The subgroup D = {t ∈ A : ϕt(p) ∈ G · p} ⊂ A is closed and it is generated by
the smallest t0 such that ϕt0(p) = g · p. Therefore, Isot(p) = L((ϕt0,g

−1))+ IsotG(p) where
L((ϕt0 ,g

−1)) is the subgroup generated by (ϕt0,g
−1) in A×G and IsotG(p) is the isotropy

group of p by the action of G. As L((ϕt0,g
−1)) is discrete, the Lie algebra Isot(p) is the Lie

algebra h of IsotG(p). We have that [h,a] = 0 because G leaves ξ invariant.
Since each orbit is a reductive homogeneous manifold, then we have a connection in every

leaf such that the geodesics of the connection are the curves exp(tX) · p for every X ∈m and
p ∈ M. Moreover, there is a decomposition a+ g = h+(a+m) and the subspace a+m is
Ad(IsotG(p))-invariant. We have that ϕt0 ◦Lg−1 is a global diffeomorphism preserving ξ and the
horizontal distribution defined by the connection above, i. e., the subspace m is Ad(ϕt0 ◦Lg−1)-
invariant. It follows that M is a reductive homogeneous manifold, and the canonical connection
∇̃ associated with the reductive decomposition above (see [KN63, Vol. 2, Ch. X]) satisfies

∇̃R̃ = 0, ∇̃T̃ = 0.

Since the Lie group A×G leaves ξ invariant then ∇̃ξ = 0 (see [CC19, p. 39, Prop. 1.4.15]).
To show that ∇̃X g = 0 for all X ∈ D, we consider, for X ∈m, the curve γ(t) = exp(tX) · p.

Since Prop. 1.2.12, the parallel transport along the curve γ is the linear map given by the
differential (Lexp(tX))∗ : TpM −→ Tγ(t)M . As this map preserves the metric, we have that
∇̃γ ′g = 0. Finally, if we take X , Y two vector fields tangent to the leaves, since ∇̃X g = 0,
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we have 0 = g(∇̃XY,ξ )+g(Y, ∇̃X ξ ) = g(∇̃XY,ξ ). Hence the leaves are totally geodesic with
respect to ∇̃ and therefore g(T̃ (X ,Y ),ξ ) = 0.
The proof of (2) implies (1).

The completeness of ∇̃ together with conditions ∇̃R̃ = 0, ∇̃T̃ = 0 and ∇̃ξ = 0 implies
(see Thm. 4.1.2) that M is a homogeneous manifold M = Ḡ/H̄, with reductive decomposition
ḡ= h̄+ m̄, ∇̃ is the canonical connection and the vector field ξ is Ḡ-invariant. The Lie group
Ḡ that acts transitively and effectively on M = Ḡ/H̄ is the Lie group of transvections of ∇̃

(see Thm. 1.2.13). Since ∇̃X g = 0, for X ∈ D, g is invariant along parallel transport by curves
orthogonal to ξ .

Let ḡ be the Lie algebra of Ḡ with reductive decomposition ḡ= h̄+ m̄. We can identify m̄

with TeH̄M via, ψ(X) = d
dt

∣∣∣
t=0

exp(tX) · eH̄. As a consequence of this identification, we can
endow m̄ with a Riemannian metric structure g given by g(X ,Y ) = g|eH̄(ψX ,ψY ). Then, we
can consider the subspace

m= {X ∈ m̄ : g(X ,ψ−1
ξ ) = 0} ⊂ m̄

and the subalgebra
h= span{[X ,Y ]h̄ : X ,Y ∈m} ⊂ h̄.

The algebra g= h+m is a Lie subalgebra of ḡ, and h is a Lie subalgebra of h̄. By Prop. 1.2.12,
the geodesics of ∇̃ starting from eH̄ have the expression exp(tX) ·eH̄ for all X ∈m and all t ∈R.
Indeed, parallel transport along such a geodesic is given by the differential map (Lexp(tX))∗.
Since ∇̃X g = 0, the transvection map Lexp(tX) is an isometry of M. From [X ,Y ]h̄ = R̃XY =

[∇̃X , ∇̃Y ]− ∇̃[X ,Y ] and ∇̃X g = 0, we conclude R̃XY ·g = 0. In particular, the transvection map
Lexp(tH) associated with each H ∈ h is an isometry. Moreover, as R̃XY ·ξ = 0 and R̃XY ·g = 0,
then m is an h-module of g and every leaf is a reductive Riemannian homogeneous manifold.

Let G be the connected Lie subgroup of Ḡ associated with g⊂ g̃. According to the above
paragraph, G is a group of isometries of M.

Lemma 6.2.4. M is a cohomogeneity one foliation of principal orbits associated with the
action of G.

Proof. The Lie group G preserves every leaf since its action preserves g and ξ , and G is
connected. Since M is a connected homogeneous space, any two points p, q ∈ M can be joined
by a broken geodesic of ∇̃ such that each geodesic is an integral curve of ξ or a ∇̃-geodesic in a
leaf (we are using here connectedness of M). Then, there exists Lg = Lg1 ◦ϕt1 ◦ . . . ◦Lgm ◦ϕtm

with m ∈ N, Lgi ∈ G and ϕ the flow of ξ such that Lg p = q. As ξ is invariant for every Lgi ,
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then Lg = ϕt1+ ... +tm ◦Lg1 ◦ . . . ◦Lgm . The integral curves of ξ intersect all orbits. Therefore,
to prove that G acts transitive on every leaf, it is enough to prove this fact in only one leaf.

Let N be the leaf of eH̄. Since N is a totally geodesic submanifold of M, by Lem. 6.2.1,
every point p ∈ N is connected to eH̄ by a broken geodesic of ∇̃. As G is connected and locally
transitive on an open neighbourhood of eH̄ (in the submanifold topology), G acts transitively on
N. Finally, every orbit is principal since {g∈G : g ·eH̄ = eH̄}= {g∈G : g ·ϕt(eH̄) =ϕt(eH̄)},
for all t ∈ R and ξ intersects all orbits.

This finishes the proof of Theorem 6.2.2. ■

Definition 6.2.5. A Riemannian manifold (M,g) equipped with a unit vector field ξ and a
linear connection ∇̃ satisfying conditions (6.1) is called a cohomogeneity one Ambrose-Singer
manifold (CO1-AS-manifold for short). In this case, the (1,2)-tensor field S = ∇− ∇̃ is called
cohomogeneity one structure, where ∇ is the Levi-Civita connection.

Remark 6.2.6. As we have described in Sec. 1.3.1, a same reductive homogeneous manifold
may have different descriptions as a quotient G/H as well as different reductive decompositions
g= h+m. Furthermore, for each of the quotient we may determine the set of all G-invariant
metrics. Together with the choice of the complement m to h, all these provide the collection of
homogeneous tensors S.

A similar situation happens in cohomogeneity one manifolds. For example, for any Lie
group G acting on (Sn,g) the Euclidean sphere, see (1.9). Then, we might consider a warped
product M = R× f Sn for a smooth function f : R−→ R+. Obviously, the Lie group {0}×G
acts with cohomogeneity one on R× f Sn and the action of every different group provides the
same (trivial) foliation. Thus, the cohomogeneity one structure helps to distinguish between
those different actions.

One advantage of AS or CO1-AS structures is that they can be used to distinguish different
homogeneous or cohomogeneity one descriptions. With respect to CO1-AS structures, their
classification is done up to equivalence in the following sense.

Definition 6.2.7. Two regular cohomogeneity one manifolds (M,g) and (M′,g′) with the
same group G are called isomorphic if and only if there exists a G-equivariant isometry
f : (M,g)−→ (M′,g′).

Definition 6.2.8. Two cohomogeneity one structures S in (M,g) and S′ in (M′,g′) are called
isomorphic if and only if there exists an isometry f : (M,g)−→ (M′,g′) that maps S to S′.

Proposition 6.2.9. Let (M,g) and (M′,g′) be two connected, simply-connected and complete G-
regular cohomogeneity one manifolds with cohomogeneity one structures S and S′, respectively.
If S and S′ are isomorphic, then (M,g) and (M′,g′) are isomorphic.
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Proof. Let f : (M,g) −→ (M′,g′) be an isometry sending S to S′. Then f is an affine map
from ∇̃ = ∇− S to ∇̃′ = ∇′− S′ where ∇ and ∇′ are the Levi-Civita connections of (M,g)
and (M′,g′), respectively. We now consider the Lie group G generated by Thm. 6.2.2 applied
for the first of the manifolds. It also acts on M′ through f . We know from Thm. 1.2.13 that
this Lie group is generated by the global transvections of the connection ∇̃. For every global
transvection F of ∇̃, then f ◦F ◦ f−1 is a transvection map of ∇̃′. Therefore, f is a G-equivariant
map.

Proposition 6.2.10. Let (M,g) and (M′,g′) be two connected, simply-connected and com-
plete G-regular cohomogeneity one manifolds. If (M,g) and (M′,g′) are isomorphic by
f : (M,g)−→ (M′,g′) and S is a cohomogeneity one structure for (M,g), then f∗S is a coho-
mogeneity one structure for (M′,g) that is isomorphic to S.

Proof. This proof is direct after the observation that f is an affine diffeomorphism between the
connections ∇̃ = ∇−S and ∇̃′ = ∇′− f∗S, where ∇ and ∇′ are the Levi-Civita connections of
(M,g) and (M′,g′), respectively.

6.3 Characterization of cohomogeneity one manifolds: local version

Let G be a Lie pseudo-group of differentiable transformations on a manifold M (we refer the
reader to [Spi92] or [Acc21] for an exposition on this topic). Given a point p0 ∈ M, we define
G(p0) as the set of transformations for which p0 belongs to the domain, and G(p0, p0)⊂ G(p0)

the set of transformations f such that f (p0) = p0. The quotient H(p0) = G(p0, p0)/∼ with
respect to the relation f ∼ f ′ ⇐⇒ f |U = f ′|U for some neighbourhood U of p0, is a Lie
group (cf. [Acc21, Ch. 1]). We now consider a frame u0 ∈ L(M) over the point p0. We recall
that the action of G on M is effective and closed if the map (4.2) is a monomorphism and
its image H(u0) is closed. The morphism (4.2) is called the isotropy representation of G on
M. The effectiveness and closedness of this representation do not depend on the choice of u0

(see Prop. 4.2.2). Following the construction in Sec. 4.2, an effective and closed action of G on
M naturally induces an action of G on the frame bundle L(M):

( f ,u) 7→ f∗,π(u) ◦u, u ∈ L(M),

where H(u0)⊂ GL(n,R) represents the isotropy group at u0 for the Lie groupoid defined by
the germs of differentials of G. It is called the linear isotropy group.

Since two local isometries f , f ′ such that f (p0) = f ′(p0) coincide on a neighbourhood of
p0 (i. e., f ∼ f ′) if and only if their differentials at p0 are equal, we have that the action of a
pseudo-group of local isometries of a Riemannian manifold (M,g) is always effective.
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If the action is both effective and transitive, given u0 ∈ L(M), the bundle

P(u0) = { f∗(u0) : f ∈ G},

is a reduction of the frame bundle to the subgroup H(u0). Under these conditions, for an
element ϕ ∈ H(p0), we define

Adϕ : Tu0P(u0)−→ Tu0P(u0)

d
dt

∣∣∣
t=0

(ϕt)∗(u0) 7−→
d
dt

∣∣∣
t=0

(ϕ ◦ϕt ◦ϕ
−1)∗(u0)

where ϕt ∈ G, and t belongs to a certain interval (−ε,ε).
Consider a Lie pseudo-group G whose action is transitive, effective and closed. In this

context, we defined the action to be reductive (see Def. 4.2.3) if and only if the tangent space
at u0, admits a decomposition Tu0P(u0) = h+m, where h is the Lie algebra associated with
H(u0) and m is a Ad(H(p0))-invariant subspace.

Theorem 6.3.1 ([CC19, p. 3.1.13]). Let (M,g) be a Riemannian manifold such that a pseudo-
group G ⊂ Isomloc(M,g) is acting transitively. Then, the action of G is effective, closed and
reductive.

Definition 6.3.2. A Riemannian manifold (M,g) is locally cohomogeneity one if there exists
a pseudo-group of local isometries G acting on M in such a way that M/G is connected and
every orbit is an orientable, embedded and closed submanifold of codimension one.

A locally cohomogeneity one Riemannian manifold (M,g) is said to be a regular if for
every two frames u0 and v0 of M, the closed subgroups H(u0) and H(v0) are conjugate in
GL(n,R). This is equivalent to the fact that all orbits are principal.

Theorem 6.3.3. Let (M, g) be an orientable and connected Riemannian manifold. The follow-
ing two are equivalent:

(1) (M,g) is a regular locally cohomogeneity one Riemannian manifold.

(2) There exists a connection ∇̃ and a unit vector field ξ ∈ X(M) such that

∇̃R̃ = 0, ∇̃T̃ = 0, ∇̃ξ = 0,

∇̃X g = 0, T̃ (X ,Y ) ∈ D, ∀X ,Y ∈ D,
(6.3)

where D = {X ∈ X(M) : g(X ,ξ ) = 0}, and R̃, T̃ are the curvature and torsion of ∇̃,
respectively. Furthermore, the maximal integral leaves of the distribution D (which is
integrable according to Lem. 6.2.1) are embedded and closed.
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Proof. The main ideas of the proof are summarized in Thm. 6.2.2.
Proof of (2) implies (1). From Thm. 4.2.5 we know that there exists reductive Lie pseudo-group
Ḡ that acts transitively on (M,g) and leaves ξ invariant. Moreover, this pseudo-group Ḡ can be
identified with the Lie pseudo-group of local transvections of ∇̃. We thus consider the subset G
of Ḡ consisting of local transvections associated with parallel transports by curves in the leaves.
Since ∇̃ξ = 0 and ∇̃X g = 0 for all X ∈ D, these local transvections preserve the vector field ξ ,
the Riemannian tensor g and thus the codimension one distribution D.

Lemma 6.3.4. The subset G is a Lie pseudo-group.

Proof. This follows directly from the definition of local transvection, i. e., it is a local diffeo-
morphism that preserves every holonomy bundle.

Lemma 6.3.5. For any f ∈ G and any point q ∈ dom( f ), both q and f (q) belong to the same
leaf. Furthermore, the action of G on every leaf is transitive.

Proof. The local transvection f ∈ G is associated with a ∇̃-parallel transport along a broken
geodesic in one leaf O, and that leaf is thus invariant. But the point q ∈ dom( f ) does not have
to belong to that leaf. In that case, there exists t0 ∈ R such that ϕt0(q) ∈ O, where ϕt is the flow
of ξ . The vector field is geodesic for ∇̃, the differential of the flow is the ∇̃-parallel transport
along ξ and the flow sends leaves to leaves. As f preserves ξ , the points q and f (q) belong to
the same leaf ϕ−t0(O).

The transitiveness comes from the existence of (broken) geodesics connecting any two
point of any leaf.

Proof of (1) implies (2). The procedure is to find a connection ∇̃ satisfying the first row of (6.3).
Again, from Thm. 4.2.5, it is sufficient to show that there exist a Lie pseudo-group Ḡ whose
action is transitive (Lem. 6.3.6), effective (Lem. 6.3.7), closed (Lem. 6.3.8) and reductive
(Lem. 6.3.9) on the leaves. Afterwards, we prove the second row of (6.3).

Since M is orientable and all orbits are principal, any orbit admits a unit normal vector field
ξ . As M/G is connected, in analogy with Thm. 6.2.2, the vector field ξ is globally defined on
M. That is, for every orbit G · po there exists an ε > 0 such that the flow ϕ : (−ε,ε)×U −→ M,
where U is an open set containing G · p0, is defined. Let G be the Riemannian pseudo-group
acting with cohomogeneity one on M. We define the pseudo-group Ḡ generated by G and A,
the latter being the pseudo-group generated by flows of unit local vector fields orthogonal to
the leaves.

Lemma 6.3.6. The Lie pseudo-group Ḡ acts transitively on M.
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Proof. Let p and q be two points. If p and q belong to the same leaf, then there exists a local
transformation f ∈ G such that f (p) = q. In general, it is easy to see that A = {x ∈ N : f (p) =
x, f ∈ Ḡ} is open and closed. Since M is connected, we get the result.

As ξ is invariant by the isometries of G, every geodesic flow orthogonal to the leaves
commutes with the local isometries of G by Lem. 6.2.3. Actually, every transformation f̄ ∈ Ḡ
can be written as f̄ = ϕ ◦ f , where ϕ ∈ A and f ∈ G.

Lemma 6.3.7. The Lie pseudo-group Ḡ is effective.

Proof. According to the first paragraph of Section 6.3, let HG(p0) be the quotient space of
elements f ∈ G fixing a point p0. Analogously, the space of elements f̄ ∈ Ḡ fixing a point p0 is
given by

H(p0) = HG(p0)+L
(
ϕt0 ◦ f−1) ,

where L(ϕt0 ◦ f−1) is the discrete Lie group generated by the element ϕt0 ◦ f−1 and t0 is the
smallest t0 > 0 such that ϕt0(p0) = f (p) for some f ∈ G. Note that, the set D = {ϕkt0(p0) : k ∈
Z} is the intersection of {ϕt(p0) : t ∈ R} and G · p0, and both subsets are closed in N.

Note that HG(p0) is effective because it arises from a Riemannian Lie pseudo-group.
We show that if (ϕt0 ◦ f−1)∗(p0) = IdTp0M, then ϕt0 ◦ f−1 is the identity map in an open
neighbourhood U of M. There is an open neighbourhood U such that both domain and image
of ϕt0 ◦ f−1 are contained in U . This map is G(U)-equivariant by local isometries h ∈ G with
domain U , i. e., for every h ∈ G(U) there exits h′ ∈ G(U) such that ϕt0 ◦ f−1 ◦h = h′ ◦ϕt0 ◦ f−1.
For every local Killing vector field X∗, its flow comes from a family Ft of isometries with t ∈ I,
where I is a closed interval, and Ft(p0) is an integral curve of X∗. Due to the equivariance,
there exists a local Killing vector field Y ∗ and a family Ht of isometries such that,

ϕt0 ◦ f−1 ◦Ft = Ht ◦ϕt0 ◦ f−1.

When applied to p0, we get
ϕt0 ◦ f−1 ◦Ft(p0) = Ht(p0),

i. e., (ϕt0 ◦ f−1)∗(X∗(p0)) = Y ∗(p0). Necessarily, X∗ = Y ∗; therefore Ht = Ft . Consequently,
by applying this argument for every local Killing vector field, we conclude that (ϕt0 ◦ f−1)

fixes integral curves of Killing vector fields with the initial point p0. In these conditions
ϕt0 ◦ f−1 = IdU .

Lemma 6.3.8. The action of the Lie pseudo-group Ḡ is closed.
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Proof. The image of H(p0) by the isotropy map (4.2) is

H(u0) = HG(u0)+L(u0
−1 ◦ (ϕt0 ◦ f−1)∗ ◦u0)

where HG(u0) is the image of HG(p0). On the one hand, as every leaf G · p is a locally
homogeneous Riemannian manifold and its action is reductive (see [Tri92]), then HG(u0) is
equal to the holonomy group of one AS-connection. Consequently, it is closed in GL(n,R).

On the other hand, let A = u0
−1 ◦ (ϕt0 ◦ f−1)∗ ◦ u0 ∈ GL(n,R). Then, the space L(A)

consists of the powers Ak for k ∈ Z. The matrix A ∈ GL(n,R) ⊂ GL(n,C) diagonalizes as
A = P ·D ·P−1. We consider a convergent sequence {Akn} in GL(n,C). Its eigenvalues cannot
have a norm different from 1; otherwise the limit would have a singular eigenvalue. If the
eigenvalues are of the form eiv with v irrational, {Akn} would not converge. Then the exponents
of the eigenvalues are rational and the group L(A) is cyclic, finite and closed. Finally, since
HG(u0) and L(A) are closed, it follows that H(u0) is closed.

As L((ϕt0 ◦ g−1)) is discrete, the Lie algebra of H(p0) is equal to the Lie algebra h of
HG(p0).

Lemma 6.3.9. The Lie pseudo-group Ḡ acts reductively.

Proof. Given a point p0 ∈ M and a frame u0 on it, we consider

P(u0) =
{

f∗ ◦u0 ∈ L(M) : f ∈ Ḡ
}

and P(u0,G · p0) = { f∗◦u0 ∈L(G · p0) : f ∈G}, the reduction of the frame bundle of M and the
orbit G · p0, respectively. Since every locally homogeneous Riemannian manifold is reductive
(see Thm. 6.3.1 above), we have the reductive decomposition in the leaves: Tu0P(u0,G · p0) =

h+m, where m is an Ad(HG(p0))-invariant subspace.
We consider the decomposition Tu0P(u0) = h+(a+m), where

a=

{
d
dt

∣∣∣
t=0

(ϕ)∗ ◦u0 : ϕ ∈ A
}
.

As every unit vector field ξ orthogonal to the leaves is invariant under the local transformations
of G, the flow of ξ commutes with every f ∈ G. Consequently, a is Ad(HG(p0))-invariant
and Ad(ϕt0 ◦Lg−1)-invariant. Finally, as ϕt0 ◦Lg−1 preserves ξ and the horizontal distribution
defined by the connection above, the subspace m is Ad(ϕt0 ◦Lg−1)-invariant.
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Therefore, from Thm. 4.2.5, there exists a global connection ∇̃ such that

∇̃R̃ = 0, ∇̃T̃ = 0.

Finally, the proof of
∇̃ξ = 0, ∇̃X g = 0, T̃ (X ,Y ) ∈ D

is analogous to the corresponding proof in Thm. 6.2.2. ■

We also have the following properties of CO1-AS-manifolds.

Proposition 6.3.10. Let (M,g, ∇̃) be a CO1-AS-manifold and let S = ∇− ∇̃ be the correspond-
ing cohomogeneity one structure tensor.

1. For every X ∈ D, we have ∇̃X S = 0.

2. For every X ∈ D, SX ·g = 0.

3. For every X, Y ∈ D then g(SXY,ξ ) = g(∇XY,ξ ) = g(II(X ,Y ),ξ ), where II is the second
fundamental form of the leaves.

4. We have that Sξ ξ = 0.

Proof. 1. Since ∇̃X g = 0, every parallel transport defined by ∇̃ along curves belonging to one
leaf preserves the Levi-Civita connection and the connection ∇. Therefore, they also preserve
the difference tensor S = ∇− ∇̃, that is, ∇̃X S = 0.

2. From ∇̃X g = 0 and ∇g = 0, we have (∇− ∇̃)X g = SX g = 0.
3. First, g(SXY,ξ ) = g((∇− ∇̃)XY,ξ ) = g(∇XY,ξ )− g(∇̃XY,ξ ). From ∇̃X g = 0, this is

equal to g(∇XY,ξ )+g(Y, ∇̃X ξ ) = g((∇XY )⊥,ξ ) = g(II(X ,Y ),ξ ).
4. It is a consequence of the fact that ξ is a geodesic vector field and ∇̃ξ = 0.

6.4 Decomposition of cohomogeneity one Structures

We now explore the infinitesimal models associated with CO1-AS manifolds as well as their
classification.

Let (V,g) be a vector space of dimension n+1, n ∈ N, endowed with a positive definite
inner product g and a unit vector ξ . Let

R̃ : V ∧V −→ End(V ), T̃ : V −→ End(V ),
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be two linear homomorphisms. We say that (R̃, T̃ ) is an infinitesimal cohomogeneity one model
if it satisfies

T̃XY + T̃Y X = 0,

R̃XY Z + R̃Y X Z = 0,

R̃XY · T̃ = R̃XY · R̃ = 0,

S
XY Z

R̃XY Z + T̃T̃XY Z = 0,

S
XY Z

R̃T̃XY Z = 0,

R̃XY ·ξ = 0,

and, for all X , Y ∈ D = L(ξ )⊥,
R̃XY ·g = 0,

R̃XY ·S = 0,

T̃XY ∈ D,

where S
XY Z

is the cyclic sum, and the dot stands for the action of R̃XY on V as a derivation.

Two CO1-AS infinitesimal models (V, T̃ , R̃,ξ ,g,S), (V, T̃ ′, R̃′,ξ ′,g′,S′) are said to be iso-
morphic if there is an isometry

f : (V,g)−→ (V ′,g′)

such that,
f R̃ = R̃′, f T̃ = T̃ ′, f (ξ ) = ξ , f S = S′.

Remark 6.4.1. In particular, at any point p of a CO1-AS manifold M there is an infinitesimal
cohomogeneity one model by taking V = TpM, gp, ξp, R̃p and T̃p. According to Thm. 6.3.3, two
points p, p′ in the same leaf of the foliation of M define isomorphic infinitesimal cohomogeneity
one models.

Given an infinitesimal cohomogeneity one model, we define

S(V ) = {S ∈V ∗⊗gl(V ) : SX ·g = 0, Sξ ξ = 0, ∀X ∈ D}

as the space of infinitesimal cohomogeneity one structures. From the decomposition V =U ⊕D
as irreducible SO(n)-submodules, U = L(ξ ), D =U⊥, we have

S(V ) = SD(V )+SU(V )
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with

SD(V ) = {S ∈ D∗⊗gl(V ) : SX ·g = 0} ≃ D∗⊗ so(V ) = D∗⊗V ∧V,

SU(V ) = {S ∈U∗⊗gl(V ) : Sξ ξ = 0}.

We now explore each of these SO(n)-submodules. As usual, we can identify spaces and their
duals through the metric g.

We begin with SD(V ). It can be decomposed in SO(n)-submodules as

SD(V ) = D∗⊗V ∗∧V ∗

= D∗⊗D∗∧D∗+D∗⊗U∗⊗D∗,

decomposition that is denoted by

T (V ) = D∗⊗D∗∧D∗,

II(V ) = D∗⊗U∗⊗D∗.

As we will see when we understand these structures coming from a CO1-AS manifold, this
notation is motivated by the fact that T (V ) is the space of all possible infinitesimal homogeneous
structures tensors of the leaves and II(V ) is the space of all possible second fundamental forms
of the leaves at each point. The decomposition of these modules into irreducible submodules
can be derived from the results in the literature. They are as follows.

Proposition 6.4.2. The submodule T (V ) decomposes as SO(n)-irreducible submodules as,

T (V ) = T1(V )+T2(V )+T3(V )

with explicit expressions,

T1(V ) =
{

S ∈ T (V ) : SXY Z = g(X ,Y )θ(Z)−g(X ,Z)θ(Y ), θ ∈ D∗
}
,

T2(V ) =
{

S ∈ T (V ) : S
XY Z

SXY Z = 0, c12(S) = 0
}
,

T3(V ) =
{

S ∈ T (V ) : SXY Z +SY XZ = 0
}
,

where c12(S)(Z) = ∑
n
i=1 SeieiZ for any orthonormal basis {e1, . . . ,en} of D.

Proof. The proof follows directly from [TV83, Thm. 3.1] applied to our notation.
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Proposition 6.4.3. The submodule II(V ) decomposes as SO(n)-irreducible submodules as,

II(V ) = II1(V )+II2(V )+II3(V )

with explicit expressions,

II1(V ) =
{

S ∈ II(V ) : SXY Z = λg(X ,Z)g(Y,ξ ), λ ∈ R
}
,

II2(V ) =
{

S ∈ II(V ) : SXY Z = g(Y,ξ )SXξ Z, SXξ Z = SZξ X , c13(S) = 0
}
,

II3(V ) =
{

S ∈ II(V ) : SXY Z = g(Y,ξ )SXξ Z, SXξ Z =−SZξ X

}
,

where c13(S)(Y ) = ∑
n
i=1 SeiYei for any orthonormal basis {e1, . . . ,en} of D.

Proof. Recall that II(V ) = D∗ ⊗U∗ ⊗ D∗. Indeed, for any S ∈ D∗ ⊗U∗ ⊗ D∗, we have
SXY Z = g(Y,ξ )SXξ Z , and S· ξ · ∈ D∗⊗D∗. This space decomposes into irreducible SL(D)

submodules as
II(V ) = D∗∧D∗+S2D∗,

in symmetric and skew-symmetric endomorphisms, respectively. To get the SO(D)⊂ SL(D)

irreducible submodules we have to take traces in the endomorphisms, i. e.,

II(V ) = D∗∧D∗+{SXξ Z ∈ S2D∗ : c12(S)(ξ ) = 0}+{SXξ Z ∈ S2D∗ : c12(S)(ξ ) ̸= 0}

and this decomposition into irreducible submodules yields the three expressions II3(V ),
II2(V ) and II1(V ), respectively.

We now analyse

SU(V ) = {S ∈U∗⊗gl(V ) : Sξ ξ = 0}=U∗⊗V ∗⊗V.

From V =U ⊕D we get

U∗⊗V ∗⊗V ∗ =U∗⊗U∗⊗V ∗+U∗⊗D∗⊗D∗+U∗⊗D∗⊗U∗

and since Sξ ξ = 0, the space SU(V ) is exactly

SU(V ) =U∗⊗D∗⊗D∗+U∗⊗D∗⊗U∗,
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decomposition that is denoted by

Z(V ) =U∗⊗D∗⊗D∗,

S1
U(V ) =U∗⊗D∗⊗U∗.

Proposition 6.4.4. The submodule Z(V ) decomposes as SO(n)-irreducible submodules as,

Z(V ) = Z1(V )+Z2(V )+Z3(V )

with explicit expressions,

Z1(V ) =
{

S ∈ Z(V ) : SXY Z = λg(Y,Z)g(X ,ξ ), λ ∈ R
}
,

Z2(V ) =
{

S ∈ Z(V ) : SXY Z = g(X ,ξ )SξY Z, SξY Z = SξY X , c23(S) = 0
}
,

Z3(V ) =
{

S ∈ Z(V ) : SXY Z = g(X ,ξ )SξY Z, SξY Z =−Sξ ZY

}
,

where c23(S)(X) = ∑
n
i=1 SXeiei for any orthonormal basis {e1, . . . ,en} of D.

Proof. As Z(V )≃ II(V ), this decomposition is analogous to Thm. 6.4.3 doing a permutation
in the indices.

Proposition 6.4.5. The submodule S1
U(V ) is SO(D)-irreducible and its explicit expression is,

S1
U(V ) =

{
S ∈ S(V ) : SXY Z = g(Y,η)g(X ,ξ )g(Z,ξ ), η ∈ D

}
.

Proof. It is direct from the fact S1
U(V ) =U∗⊗D∗⊗U∗ ≃ D∗ and it is irreducible. Its explicit

expression is direct.

Therefore, we can write the space of cohomogeneity one structures as

S(V ) = T (V )+II(V )+Z(V )+S1
U(V ).

From the previous four propositions we have that, in fact, S(V ) decomposes into the sum of
ten irreducible SO(n)-submodules. The local isometries in CO1-AS manifolds in Thm. 6.3.3
give the following result.

Proposition 6.4.6. If the cohomogeneity one structure Sp of a CO1-AS manifold (M,g) at a
point p ∈ M belongs to a certain irreducible submodule or sum of irreducible submodules, then
Sp′ belongs to the same submodule or sum of submodules for any other point p′ of the leaf of p.
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We now give a few simple geometric results stemming from the classification above. It is
easy to see that the projections to each submodule are

ΠT (V )(S)XY Z =
n

∑
i, j=0

g(X ,ei)g(Y,e j)Seie jZ,

ΠII(V )(S)XY Z =
n

∑
i=0

g(X ,ei)g(Y,ξ )Seiξ Z,

ΠZ(V )(S)XY Z =
n

∑
i=0

g(Y,ei)g(X ,ξ )Seiξ Z,

ΠS1
U (V )(S)XY Z = g(X ,ξ )g(Z,ξ )SξY ξ .

Proposition 6.4.7. Let (M,g,ξ ) be a CO1-AS manifold and p ∈ M.
If ΠT (V )(Sp)XY Z = 0, then the leaf of p is a locally symmetric Riemannian manifold.
If ΠT (V )(Sp)XY Z ∈ T1(V ), then the leaf of p is locally isometric to the real hyperbolic

space.
If ΠII(V )(Sp)XY Z = 0, then the leaf of p is a totally geodesic submanifold.

6.5 The canonical cohomogeneity one structure

On the one hand, in the proof (1) implies (2) of the classical Ambrose-Singer Theorem, the
procedure is to construct the canonical connection (see Def. 1.2.11) associated with the reductive
decomposition given. As we have described in Sec. 1.2.1 this connection is characterized
from an algebraic (see Thm. 1.2.10) and geometrical (see Prop. 1.2.12) point of view. On the
other hand, in this section we give a formula for the cohomogeneity one structure constructed
in the proof (1) implies (2) of Thm. 6.2.2 along a geodesic that intersects all the orbits of a
cohomogeneity one action without singular orbits.

We consider a reductive homogeneous space M = G/H (not necessarily Riemannian),
with reductive decomposition g = h+m. For any X ∈ g we denote by X∗ the fundamental
vector field associated with X . The canonical connection ∇̃ of M with respect to the above
decomposition is determined by (1.6)(

∇̃X∗Y ∗)
o =−[X ,Y ]m,

for any X , Y ∈ m, o = eH. Since Thm. 1.2.15, if T̃ is the torsion of ∇̃, then we also have
T̃o(X∗

o ,Y
∗
o ) =−[X ,Y ]m for all X , Y ∈m.

Lemma 6.5.1. If X ∈m and Y ∈ g then ∇̃XY ∗ =−[X ,Y ]m.
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Proof. Using the formulas for ∇̃ and the torsion T̃o, when the corresponding vector are in m,
we have

∇̃XY ∗ = ∇̃X∗
o Y ∗ =

(
∇̃X∗Y ∗)

o

=
(
∇̃Y ∗X∗)

o +[X∗,Y ∗]o + T̃o(X∗,Y ∗)

= ∇̃Y ∗
o X∗− [X ,Y ]∗o + T̃o(X∗

o ,Y
∗
o )

= ∇̃YmX∗− [X ,Y ]m+ T̃o(X ,Ym)

=−[Ym,X ]m− [X ,Y ]m− [X ,Ym]m =−[X ,Y ]m,

as we wanted to show.

Now we calculate ∇̃ at any other point.

Lemma 6.5.2. If X, Y ∈m and f ∈ G, we have(
∇̃X∗Y ∗)

f (o) =− f∗o
[(

Ad( f−1)X
)
m
,Ad( f−1)Y

]
m
.

Proof. Let X ∈ g. We consider ψt = exp(tX) the 1-parameter group generated by X . We
denote by I f−1 the conjugation by f−1, and by Ad( f−1) = I f−1∗ the corresponding adjoint
representation of g. We have

X∗
f (o) =

d
dt

∣∣∣
t=0

ψt( f (o)) =
d
dt

∣∣∣
t=0

f I f−1(ψt)(o) = f∗o
(
Ad( f−1)X

)
o.

Hence,
(

f−1
∗ X∗)

o =
(
Ad( f−1)X

)
o. Since ∇̃ is G-invariant, Lem. 6.5.1 yields(

∇̃X∗Y ∗)
f (o) = f∗o

(
∇̃ f−1

∗ X∗ f−1
∗ Y ∗)

o = f∗o∇̃(
Ad( f−1)X

)
m

(
Ad( f−1)Y

)∗
= f∗o

[(
Ad( f−1)X

)
m
,Ad( f−1)Y

]
m
,

as claimed.

Now we come back to our original problem. We consider a Riemannian manifold M that
is being acted upon by a group of isometries G of cohomogeneity one, all whose orbits are
principal. As we have seen, we can define a global unit vector field ξ that is orthogonal to all
the orbits of G. We denote by ϕt the flow of ξ . Then ϕt determines a 1-parameter group A that
is isomorphic to R or S1. As a consequence, M is now a homogeneous space acted upon by
A×G by the formula (t,g) · p = ϕt(g · p) = g ·ϕt(p). In particular, A is contained in the center
of A×G, and ξ is the fundamental vector field on M determined by 1 ∈ A.
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From now on we fix p ∈ M. We have the reductive decomposition a+m= h+(a+m) at
p. We determine the canonical connection ∇̃ associated with this decomposition. We define
γ(t) = ϕt(p), which is a unit speed geodesic that intersects all the orbits of G orthogonally.

Proposition 6.5.3. If X, Y ∈m, then we have
(
∇̃ξ X∗)

γ(t) =
(
∇̃X∗ξ

)
γ(t) =

(
∇̃ξ ξ

)
γ(t) = 0, and(

∇̃X∗Y ∗)
γ(t) =−ϕt∗p[X ,Y ]m.

Proof. Since A is contained in the center of A×G we have that Ad(t), t ∈ A, acts as the identity
of a+g. Thus, Ad(t−1)ξ = ξ and Ad(t−1)X = X for all X ∈m. Since [a,a+g] = 0, the first
three equalities of the statement follow from Lem. 6.5.2. Finally, if X , Y ∈m, Lem. 6.5.2 yields(

∇̃X∗Y ∗)
γ(t) =−ϕt∗p

[(
Ad(t−1X)

)
a+m

,Ad(t−1Y )
]
a+m

=−ϕt∗p
[
Xa+m,Y

]
a+m

=−ϕt∗p
[
X ,Y

]
m
,

which finishes the proof.

Finally, we calculate the cohomogeneity one structure S =∇−∇̃, where ∇ is the Levi-Civita
connection of M.

Proposition 6.5.4. Let X, Y , Z ∈m, and a, b, c ∈ R. Then, the difference tensor S is given by

2g
(
Saξ+X∗(bξ +Y ∗),cξ +Z∗)

γ(t) =

a
d
dt

g
(
ϕt∗pY,ϕt∗pZ

)
+b

d
dt

g
(
ϕt∗pX ,ϕt∗pZ

)
− c

d
dt

g
(
ϕt∗pX ,ϕt∗pY

)
+g
(
ϕt∗p[X ,Y ]m,ϕt∗pZ

)
−g
(
ϕt∗p[X ,Z]m,ϕt∗pY

)
−g
(
ϕt∗p[Y,Z]m,ϕt∗pX

)
.

Proof. Since ξ is a geodesic vector field, ∇ξ ξ = 0. Moreover, since Y ∗, Y ∈ m, is Killing,
we have g

(
∇ξY ∗,ξ

)
= 0 and g

(
∇ξY ∗,Z∗) = −g

(
∇Z∗Y ∗,ξ

)
. Also, g

(
ξ ,ξ

)
= 1 implies

g
(
∇X∗ξ ,ξ

)
= 0, and g

(
X∗,ξ

)
= 0 implies g

(
∇X∗ξ ,Z∗) = −g

(
∇X∗Z∗,ξ

)
. Altogether this

gives
2g
(
∇aξ+X∗(bξ +Y ∗),cξ +Z∗)= −2ag

(
∇Z∗Y ∗,ξ

)
−2bg

(
∇X∗Z∗,ξ

)
+2cg

(
∇X∗Y ∗,ξ

)
+2g

(
∇X∗Y ∗,Z∗). (6.4)

We calculate g
(
∇X∗Y ∗,ξ

)
γ(t) for X , Y ∈m. First note that X∗

γ(t) = X∗
ϕt(p) = ϕt∗pX∗

p because
ϕt commutes with the action of G. The fact that ξ is geodesic, X∗ and Y ∗ are Killing vector
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fields, and the Levi-Civita connection is torsion-free yields

d
dt

g
(
ϕt∗pX ,ϕt∗pY

)
=

d
dt

g
(
X∗

γ(t),Y
∗
γ(t)

)
= g
(
∇ξγ(t)

X∗,Y ∗
γ(t)

)
+g
(
X∗,∇ξγ(t)

Y ∗
γ(t)

)
=−g

(
∇Y ∗

γ(t)
X∗,ξγ(t)

)
−g
(
∇X∗

γ(t)
Y ∗,ξγ(t)

)
=−g

(
2∇X∗

γ(t)
Y ∗− [X∗,Y ∗]γ(t),ξγ(t)

)
=−2g

(
∇X∗

γ(t)
Y ∗,ξγ(t)

)
.

The last addend of (6.4) can be calculated from [Bes87, p. 7.27] as

g
(
∇X∗Y ∗,Z∗)= g

(
[X∗,Y ∗],Z∗)+g

(
[X∗,Z∗],Y ∗)+g

(
[Y ∗,Z∗],X∗).

Since X∗
ϕt(p) = ϕt∗pXp, we see that X∗ is ϕt-related to itself. Thus, [X∗,Y ∗]γ(t) = [X∗,Y ∗]ϕt(p) =

ϕt∗p[X∗,Y ∗]p =−ϕt∗p[X ,Y ]m.
Substituting in (6.4) we obtain the Levi-Civita connection of M along γ . This, together with

Prop. 6.5.3, finishes the proof of Prop. 6.5.4.

Remark 6.5.5. Let Aγ(t) denote the shape operator of G · γ(t) at γ(t) with respect to the normal
vector ξγ(t), that is, Aγ(t)(v) =−∇vξ , v ∈ Tγ(t)

(
G · γ(t)

)
. Then,

g
(
Aγ(t)X

∗
γ(t),Y

∗
γ(t)

)
=−g

(
∇X∗Y ∗,ξ

)
γ(t) =

1
2

d
dt

g
(
ϕt∗pX ,ϕt∗pY

)
.

Furthermore, X∗
γ(t) is a Jacobi vector field along γ with d

dt |0
X∗

γ(t) =−ApX∗
p . Thus, if one is

able to solve the Jacobi equation along γ , then X∗
γ(t) can be calculated explicitly, and so can the

shape operator Aγ(t).

Definition 6.5.6. The cohomogeneity one structure S given in Prop. 6.5.4 is called the canonical
cohomogeneity one structure.

From Prop. 6.5.3, the canonical cohomogeneity one structure satisfies

T̃ (ξ , · ) = 0,

where T̃ is the torsion of ∇̃ = ∇−S.

Proposition 6.5.7. Let S1 and S2 be two cohomogeneity one structures on (M,g) associated
with ξ such that T̃1(ξ , · ) = 0 and T̃2(ξ , · ) = 0. If ΠT (V )(S1) = ΠT (V )(S2), then S1 = S2.
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Proof. We notice that the distribution D = {X : g(X ,ξ ) = 0} is independent of the choice of
S1 and S2. Therefore, it makes sense to consider ΠT (V )(S1) = ΠT (V )(S2). This means that
(S1)XY = (S2)XY for all X , Y ∈ D. For i = 1, 2, as the Levi-Civita connection is torsion-free,

T̃i(ξ ,A) =−(Si)ξ A+(Si)Aξ , ∀A ∈ T M.

We apply T̃i(ξ , ·) = 0 and get (Si)ξ A = (Si)Aξ . For all a, b ∈ R, we apply Prop. 6.3.10,

g((Si)aξ+X ξ ,cξ +Y )
(4)
= g((Si)X ξ ,cξ +Y )
(2)
= g((Si)X ξ ,Y )
(3)
= −II(X ,Y ),

which is independent of the choice of i. Then S1 = S2.

Remark 6.5.8. The canonical cohomogeneity one structure S is the unique (up to homogeneous
structure in the leaves) cohomogeneity one structure satisfying,

T̃ (ξ , · ) = 0

where T̃ is the torsion of ∇̃ = ∇−S.

6.6 Examples

In this section we examine examples and techniques to construct cohomogeneity one structures.

Parallel hyperplanes in euclidean spaces

Let (Rn,gRn) be the Euclidean space. If H is a closed subgroup of SO(n− 1), then G =

H ⋉Rn−1 acts transitively on (Rn−1,gRn−1). Consequently, G acts with cohomogeneity one on
Rn. For p = (p1, . . . , pn), the orbit space G · p = {(x1, . . . xn−1, pn) : xi ∈R} gives a foliation
without singular orbits. The unit vector field orthogonal to the leaves is ξp = (0, . . . 0,1) and
its flow is ϕt(p) = (p1, . . . , pn + t). Since ϕt is isometric and Rn−1 is an abelian ideal of Rn,
the first and second rows of Prop. 6.5.4 are zero. Thus, S = 0.

Concentric spheres in euclidean spaces

The space (Rl −{0},gRl) equipped with the Eucliden metric is isometric to the warped product
(R+× f Sl−1,g), g = dr2 + f (r)2gSl−1 , where r is the distance to the origin, f (r) = r, and gSl−1
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is the round metric of the sphere. Let π2 : R+× f Sl−1 −→ Sl−1 be the projection to the second
coordinate. Consider a Lie group G of isometries of (Sl−1,gSl−1) and the canonical connection
∇̃Sl−1

associated with it. We also consider the pseudo-group (R+,+) acting transitively on R+.
The Lie pseudo-group R+×G acts transitively on R+× f Sl−1 and there is an AS-connection
∇̃ (non-necessarily Riemannian and non necessarily complete) such that

∇̃T̃ = 0, ∇̃R̃ = 0.

Actually,
∇̃ = ∇

R+
⊕ ∇̃

Sl−1
,

where ∇R+
is the Levi-Civita connection for R+.

The Lie group G acts with cohomogeneity one on R+×Sl−1 = R+×G/H and its action
gives a foliation of spheres Sl−1(r) of radius r > 0. The normal vector field for each one of these
submanifolds is, η(r, p) = ∂/∂ r (in Euclidean coordinates, η(x) = x

||x||) and the associated

COAS-1 connection is ∇̃. We know that (see [ONe83, p. 206, Prop. 35])

∇ = ∇
R+

⊕∇
Sl−1

− f 2π2
∗(gSl−1)

f
grad( f )+

l−1

∑
i=1

η( f )
f

(η∗⊗dei +dei ⊗η
∗)

∂

∂ei

where ∇Sl−1
is the Levi-Civita connection for the sphere Sl−1 and

{
∂

∂e1 , . . . ,
∂

∂el−1

}
is an

orthonormal basis of TxSl−1 and
{

de1, . . . ,del−1} is its dual basis. As η( f ) = 1, we have

∇ = ∇
R+

⊕∇
Sl−1

− f 2π2
∗(gSl−1)

||x||
η +

1
||x||

l−1

∑
i=1

(
η
∗⊗dei +dei ⊗η

∗) ∂

∂ei .

Hence, the sphere foliation of (Rl −{0},g) induced by the Lie group G possesses a
cohomogeneity-one structure, represented by,

S = 0⊕SS
l−1

− f 2π2
∗(gSl−1)

||x||
η +

1
||x||

l−1

∑
i=1

(
η
∗⊗dei +dei ⊗η

∗) ∂

∂ei , (6.5)

where SS
l−1

= ∇Sl−1 − ∇̃Sl−1
is the homogeneous structure for the action of G on Sl−1 = G/H.

In other words,

SBC = SS
l−1

(π2)∗B(π2)∗C− g((π2)∗B,(π2)∗C))

r
∂

∂ r

+
1
r

(
g
(

∂

∂ r
,B
)
(π2)∗C+g

(
∂

∂ r
,C
)
(π2)∗B

)
.
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In particular, for p ∈ M, if we take B, C ∈ TpSl−1, we have

SBC = SS
l−1

B C− rgSl−1(B,C)η

SBη =
1
r

B, SηC =
1
r

C.

In a broader sense, let (M1,g2, ∇̃1) and (M2,g2, ∇̃2) be two Riemannian AS-manifolds, that
is,

∇̃1R̃1 = 0, ∇̃1T̃1 = 0, ∇̃1g1 = 0
∇̃2R̃2 = 0, ∇̃2T̃2 = 0, ∇̃2g2 = 0,

where R̃i and T̃i are the curvature and torsion of ∇̃i with i = 1,2. On the one hand, the product
manifold M1 ×M2 is a general AS-manifold with AS-connection

∇̃ = ∇̃1 ⊕ ∇̃2.

On the other hand, for a positive function f : M1 −→ R+, then we can consider the warped
product

(
M1 × f M2, g = π1

∗(g1)+( f ◦π1)
2π2

∗(g2)
)

where πi is the projection onto Mi with
i = 1 or 2. We write f instead of f ◦π1. In particular, if the dimension of M1 is 1, the warped
product is a regular (locally) cohomogeneity one and the Levi-Civita connection in local
coordinates is given by (again, [ONe83, p. 206, Prop. 35])

∇ = ∇1 ⊕∇2 −
f 2π2

∗(g2)

f
grad( f )+

l−1

∑
i=1

η( f )
f

(η∗⊗dei +dei ⊗η
∗)

∂

∂ei

where η is a unit vector field in (M1,g1),
{

∂

∂e1 , . . . ,
∂

∂el−1

}
is a local orthonormal basis of M2,

and
{

de1, . . . ,del−1} is its dual basis. Finally, the (1, 2)-tensor

S = ∇− ∇̃

is a cohomogeneity one structure.

The horosphere foliation in the real hyperbolic space

The real hyperbolic space RH(n) with the hyperbolic metric of constant scalar curvature equal
to −1 is isometric to the warped product (R× f Rn−1,g = dt2 + f (t)2gRn−1), with f (t) = e−t .
Following the procedure outlined above, we can introduce the AS-connection ∇̃, defined as

∇̃ = ∇
R⊕∇

Rn−1
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where ∇R and ∇Rn−1
are the Levi-Civita connections of R and Rn−1, respectively. Note that ∇̃

corresponds to the Levi-Civita connection for the euclidean metric in Rn. However, ∇̃ is not
metric with respect g, even though it satisfies

∇̃R̃ = 0, ∇̃T̃ = 0, ∇̃ξ = 0, ∇̃X g = 0, T̃ (X ,Y ) ∈ L(ξ )⊥,

where ξ = ∂/∂ t and R̃ and T̃ are the curvature and torsion of ∇̃. In other words, ∇̃ is an
AS-connection of Thm. 6.2.2 and S = ∇− ∇̃ is a cohomogeneity one structure, where ∇ is the
Levi-Civita connection of RH(n). We now compute S explicitly.

The Levi-Civita connection for a warped product is

∇ = ∇
R⊕∇

Rn−1
− f 2π2

∗(gRn−1)

f
grad( f )+

n−1

∑
i=1

ξ ( f )
f

(
ξ
∗⊗dei +dei ⊗ξ

∗) ∂

∂ei ,

that is

∇ = ∇
R⊕∇

Rn−1
+ f 2

π2
∗(gRn−1) ξ −

n−1

∑
i=1

(
ξ
∗⊗dei +dei ⊗ξ

∗) ∂

∂ei .

The cohomogeneity one structure S = ∇− ∇̃ is thus

S = f 2
π2

∗(gRn−1) ξ −
l−1

∑
i=1

(
ξ
∗⊗dei +dei ⊗ξ

∗) ∂

∂ei

= g((π2)∗X ,(π2)∗Y )ξ −g(ξ ,X)(π2)∗Y −g(ξ ,Y )(π2)∗X ,

and putting ((π2)∗X) = X −g(X ,ξ )ξ and (π2)∗Y = Y −g(Y,ξ )ξ , we finally get

SXY = g(X ,Y )ξ −g(ξ ,X)Y −g(ξ ,Y )X +g(X ,ξ )g(ξ ,Y )ξ .

A non-canonical cohomogeneity one structure

The real hyperbolic space RH(n), in the coordinates above, is characterized by the existence of
a homogeneous structure S̄ of linear type, see [TV83, Thm. 5.2]. This has the expression,

S̄XY = g(X ,Y )ξ −g(Y,ξ )X

where ξ = ∂

∂ t and satisfies,

˜̄
∇ ˜̄R = 0, ˜̄

∇ ˜̄T = 0, ˜̄
∇S̄ = 0, ˜̄

∇g = 0,
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where S̄ = ∇− ˜̄
∇, the Levi-Civita connection is ∇, and the curvature and torsion of ˜̄

∇ are ˜̄R
and ˜̄T , respectively. We have

− ˜̄TAB = S̄AB− S̄BA = g(A,ξ )B−g(B,ξ )A.

Then, for all X , Y ∈ D = {X : g(X ,ξ ) = 0},

˜̄TXY = 0, ˜̄TξY =−Y ̸= 0

which means that S̄ is a cohomogeneity one structure, but it is not a canonical cohomogeneity
one structure.





Appendix A

Expressions of Homogeneous Structures

Theorem A.1 ([AG88, Thm. 2.1] and [BGO11, Thm. 3.5]). If m ≥ 6, the space K(V ) is
decomposed into mutually orthogonal and irreducible U(p,q)-submodules as

K(V ) =K1(V )⊕K2(V )⊕K3(V )⊕K4(V ),

where

K1(V ) =
{

S ∈ K(V ) : SXY Z =
1
2
(SY ZX +SZXY +SJY JZX +SJZXJY ) , c12(S) = 0

}
,

K2(V ) =
{

S ∈ K(V ) : SXY Z = ⟨X ,Y ⟩χ2(Z)−⟨X ,Z⟩χ2(Y )+ ⟨X ,JY ⟩χ2(JZ)

−⟨X ,JZ⟩χ2(JY )−2⟨JY,Z⟩χ2(JX), χ2 ∈V ∗
}
,

K3(V ) =
{

S ∈ K(V ) : SXY Z =−1
2
(SY ZX +SZXY +SJY JZX +SJZXJY ) , c12(S) = 0

}
,

K4(V ) =
{

S ∈ K(V ) : SXY Z = ⟨X ,Y ⟩χ4(Z)−⟨X ,Z⟩χ4(Y )+ ⟨X ,JY ⟩χ4(JZ)

−⟨X ,JZ⟩χ4(JY )−2⟨JY,Z⟩χ4(JX), χ4 ∈V ∗
}

and

c12(S)(Z) =
m

∑
i=1

SeieiZ,

for an orthonormal basis {e1, . . . ,em}.
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Theorem A.2 ([CC19, Prop. 4.2.10]). If m ≥ 7, the space S+(V ) decomposes into irreducible
and mutually orthogonal U(p,q)×{1}-submodules as

S+(V ) = CS1(V )⊕CS2(V )⊕CS3(V )⊕CS4(V )⊕CS5(V )⊕CS6(V )

where

CS1(V ) =
{

S ∈ S+(V ) : SXY Z =
1
2
(SY ZX +SZXY +SJY JZX +SJZXJY ) , c12(S) = 0

}
,

CS2(V ) =
{

S ∈ S+(V ) : SXY Z = ⟨X ,Y ⟩ψ2(Z)− εη(X)η(Y )ψ2(Z)−⟨X ,Z⟩ψ2(Y )

+ εη(X)η(Z)ψ2(Y )+ ⟨X ,φY ⟩ψ2(φZ)−⟨X ,φZ⟩ψ2(φY )

−2⟨φY,Z⟩ψ2(φX), ψ2 ∈ V̂ ∗
}
,

CS3(V ) =
{

S ∈ S+(V ) : SXY Z =−1
2
(SY ZX +SZXY +SJY JZX +SJZXJY ) , c12(S) = 0

}
,

CS4(V ) =
{

S ∈ S+(V ) : SXY Z = ⟨X ,Y ⟩ψ4(Z)− εη(X)η(Y )ψ4(Z)−⟨X ,Z⟩ψ4(Y )

+ εη(X)η(Z)ψ4(Y )+ ⟨X ,φY ⟩ψ4(φZ)−⟨X ,φZ⟩ψ4(φY )

+2⟨φY,Z⟩ψ4(φX), ψ4 ∈ V̂ ∗
}
,

CS5(V ) =
{

S ∈ S+(V ) : SXY Z = αη(X)g(Y,φZ), α ∈ R
}
,

CS6(V ) =
{

S ∈ S+(V ) : c2φ3(ξ ) = 0
}
,

and

c12(S)(Z) =
m−1

∑
i=1

SeieiZ, c2φ3(S)(Z) =
m−1

∑
i=1

SZeiφei,

for V̂ the orthogonal complement to ξ , an orthonormal basis {e1, . . . ,em−1} of V̂ and
ε = g(ξ ,ξ ).

Theorem A.3 ([CG90]). If m ≥ 7, the space S−(V ) decomposes into irreducible and mutually
orthogonal U(p,q)×{1}-submodules as

S−(V ) = C1(V )⊕ ·· · ⊕C12(V )
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where

C1(V ) =
{

S ∈ S−(V ) : SXXY = SXY ξ = 0
}
,

C2(V ) =
{

S ∈ S−(V ) : S
X ,Y,Z

SXY Z = 0, SXY ξ = 0
}
,

C3(V ) =
{

S ∈ S−(V ) : SXY Z −SφXφY Z = 0, c12(S) = 0
}
,

C4(V ) =
{

S ∈ S−(V ) : SXY Z = ⟨X ,Y ⟩µ4(Z)− εη(X)η(Y )µ4(Z)−⟨X ,Z⟩µ4(Y )

+ εη(X)η(Z)µ4(Y )−⟨X ,φY ⟩µ4(φZ)+ ⟨X ,φZ⟩µ4(φY ), µ4 ∈ V̂ ∗
}
,

C5(V ) =
{

S ∈ S−(V ) : SXY Z = βε (η(Y )g(X ,φZ)−η(Z)g(X ,φY )) , β ∈ R
}
,

C6(V ) =
{

S ∈ S−(V ) : SXY Z = γε (η(Y )g(X ,Z)−η(Z)g(X ,Y )) , γ ∈ R
}
,

C7(V ) =
{

S ∈ S−(V ) : SXY Z = η(Z)SY Xξ −η(Y )SφXφZξ , c12(S)(ξ ) = 0
}
,

C8(V ) =
{

S ∈ S−(V ) : SXY Z =−η(Z)SY Xξ −η(Y )SφXφZξ , c1φ2(S)(ξ ) = 0
}
,

C9(V ) =
{

S ∈ S−(V ) : SXY Z = η(Z)SY Xξ +η(Y )SφXφZξ

}
,

C10(V ) =
{

S ∈ S−(V ) : SXY Z =−η(Z)SY Xξ +η(Y )SφXφZξ

}
,

C11(V ) =
{

S ∈ S−(V ) : SXY Z =−η(X)Sξ φY φZ

}
,

C12(V ) =
{

S ∈ S−(V ) : SXY Z = εη(X)(η(Y )µ12(Z)−η(Z)µ12(Y )) , µ12 ∈ V̂ ∗
}
,

and

c12(S)(Z) =
m−1

∑
i=1

SeieiZ, c1φ2(S)(Z) =
m−1

∑
i=1

SeiφeiZ,

for V̂ the orthogonal complement to ξ , an orthonormal basis {e1, . . . ,em−1} of V̂ and
ε = g(ξ ,ξ ).
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